Fibers and Polymers

, Volume 13, Issue 9, pp 1113–1119 | Cite as

Silsesquiazane/organic polymer blends as organic-inorganic hybrid materials

  • Kwang Hee Yoo
  • Il Won Kim
  • Jeong Ho Cho
  • Young-Je Kwark


Silsesquiazane (SSQZ), one of the branched forms of polysilazane, was blended with polystyrene (PS), poly(methyl methacrylate) (PMMA), poly(iso-butyl methacrylate) (PBMA), and poly(vinyl acetate) (PVAc) to produce organic-inorganic hybrid materials. The polymers were selected to provide specific interaction, such as π-π interaction or hydrogen bonding, with SSQZ. AFM studies revealed that carbonyl containing polymers, PMMA, PBMA, and PVAc were miscible with SSQZ while PS was immiscible. DSC analysis of the hybrids also supported the miscibility behaviours of the system. The glass transition behaviour of SSQZ/PS showed individual transition temperature corresponding to the each component while SSQZ/carbonyl-containing polymers displayed one transition temperature that matched with the theoretically calculated values following the Kwei equation. Among the miscible hybrid system, the interaction with SSQZ increased in the order of PMMA> PBMA> PVAc, as determined by the q value in the Kwei equation. This result was confirmed by determining the degree of hydrogen bonding in FT-IR spectra. Thermal stability of organic polymers was improved by incorporating SSQZ regardless of the miscibility.


Polymer blends and alloys Silsesquiazane Miscibility Hydrogen bonding Thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Kickelbick in “Hybrid Materials” (G. Kickelbick Ed.), pp.1–48, Wiley-VCH, Weinheim, 2007.Google Scholar
  2. 2.
    K.-H. Haas and K. Rose, Rev. Adv. Mater. Sci., 5, 47 (2003).Google Scholar
  3. 3.
    B. J. Scott, G. Wirnsberger, and G. D. Stucky, Chem. Mater., 13, 3140 (2001).CrossRefGoogle Scholar
  4. 4.
    F. Bauera, H.-J. Gläsela, E. Hartmanna, H. Langgutha, and R. Hinterwaldner, Int. J. Adhes. Adhes., 24, 519 (2004).CrossRefGoogle Scholar
  5. 5.
    D. Kessler and P. Theato, Macromolecules, 41, 5237 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Angew. Chem. Int. Ed., 45, 3216 (2006).CrossRefGoogle Scholar
  7. 7.
    C.-C. Yang, P.-T. Wu, W.-C. Chen, and H.-L. Chen, Polymer, 45, 5691 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Birot, J.-P. Pilot, and J. Dunoguès, Chem. Rev., 95, 1443 (1995).CrossRefGoogle Scholar
  9. 9.
    J. Lücke, J. Hacker, D. Suttor, and G. Ziegler, Appl. Organomet. Chem., 11, 181 (1997).CrossRefGoogle Scholar
  10. 10.
    E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, Mater. Sci. Eng., 26, 97 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Iwamoto, K. Sato, T. Kato, T. Inada, and Y. Kubo, J. Eur. Ceram. Soc., 25, 257 (2005).CrossRefGoogle Scholar
  12. 12.
    N. S. Choong Kwet Yive, R. J. P. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux, Chem. Mater., 4, 1263 (1992).CrossRefGoogle Scholar
  13. 13.
    T. C. Chang, S. T. Yan, P. T. Liu, Z. W. Lin, H. Aoki, and S. M. Sze, Thin Solid Films, 447–448, 516 (2004).CrossRefGoogle Scholar
  14. 14.
    E. Duguet, M. Schappacher, and A. Soum, Macromolecules, 25, 4835 (1992).CrossRefGoogle Scholar
  15. 15.
    Y.-J. Kwark, J. P. Bravo-Vasquez, H. B. Cao, H. Deng, and C. K. Ober, J. Photopolym. Sci. Tec., 18, 481 (2005).CrossRefGoogle Scholar
  16. 16.
    W. Zhang, B. X. Fu, Y. Seo, E. Schrag, B. Hsiao, P. T. Mather, N.-L. Yang, D. Xu, H. Ade, M. Rafailovich, and J. Sokolov, Macromolecules, 35, 8029 (2002).CrossRefGoogle Scholar
  17. 17.
    R. Misra, A. H. Alidedeoglu, W. L. Jarrett, and S. E. Morgan, Polymer, 50, 2906 (2009).CrossRefGoogle Scholar
  18. 18.
    C.-F. Huang, S.-W. Kuo, F.-J. Lin, W.-J. Huang, C.-F. Wang, W.-Y. Chen, and F.-C. Chang, Macromolecules, 39, 300 (2006).CrossRefGoogle Scholar
  19. 19.
    Y.-C. Yen, S.-W. Kuo, C.-F. Huang, J.-K. Chen, and F.-C. Chang, J. Phys. Chem. B, 112, 10821 (2008).CrossRefGoogle Scholar
  20. 20.
    K. M. Kim, Polymer (Korea), 30, 380 (2005).Google Scholar
  21. 21.
    M. Gordon and J. S. Taylor, J. Appl. Chem., 2, 493 (1952).CrossRefGoogle Scholar
  22. 22.
    T. K. Kwei, J. Polym. Sci. Pol. Lett., 22, 307 (1984).CrossRefGoogle Scholar
  23. 23.
    S. H. Goh and K. S. Slow, Polym. Bull., 17, 453 (1987).Google Scholar
  24. 24.
    N. Bouslah and F. Amrani, eXPRESS Polym. Lett., 1, 44 (2007).CrossRefGoogle Scholar
  25. 25.
    D. J. T. Hill, A. K. Whittaker, and K. W. Wong, Macromolecules, 32, 5285 (1999).CrossRefGoogle Scholar
  26. 26.
    S. W. Kuo, H. C. Lin, W.-J. Huang, C.-F. Huang, and F.-C. Chang, J. Polym. Sci. Pol. Phys., 44, 673 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kwang Hee Yoo
    • 1
  • Il Won Kim
    • 2
  • Jeong Ho Cho
    • 3
  • Young-Je Kwark
    • 2
  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringSoongsil UniversitySeoulKorea
  3. 3.SKKU Advanced Institute of NanotechnologySungkyunkwan UniversitySuwonKorea

Personalised recommendations