Fibers and Polymers

, Volume 13, Issue 5, pp 600–605 | Cite as

Enzymatic treatment of mechanochemical modified natural bamboo fibers

  • Lifang Liu
  • Longdi Cheng
  • Liqian Huang
  • Jianyong Yu


Natural bamboo fibers have attracted growing demands in textile industry due to benefit from their excellent properties and renewable and abundant resource; however, there are still limitations for their application in textile industry because of their poor quality. For this reason, enzymes treatments on mechanochemically modified natural bamboo fibers were conducted to extract noncellulosic matters from finer natural bamboo fibers in this paper. Four enzymes, pectin lyase, xylanase, laccase, and cellulase, were used to remove pectin, hemicellulose, lignin and to loosen the compact structure of fibers, respectively. Furthermore, the concentrations of four enzymes were optimized in terms of fiber chemical composition, weight loss, fineness, and tenacity to obtain high quality fibers. An obvious reduction in amount of noncellulosic substances and also a remarkable improvement in fineness in the modified fibers can be found from the experimental results. The optimum parameters are determined as: 0.6 % pectin lyase, 1.2 % cellulase, 0.3 % xylanase, and 1.2 % laccase; and the natural bamboo fiber thus obtained is 77.51 % in cellulose content, 2.81 tex in fineness, and 2.62 cN/dtex in tenacity.


Natural bamboo fiber Enzyme Biological modification Mechanochemical modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Okubo, T. Fujii, and Y. Yamamoto, Compos. Part A -Appl. S., 35, 377 (2004).CrossRefGoogle Scholar
  2. 2.
    K. F. Chung and W. K. Yu, Eng. Struct., 24, 429 (2002).CrossRefGoogle Scholar
  3. 3.
    L. Zou, H. Jin, W. Lu, and X. Li, Mater. Sci. Eng., 29, 1375 (2009).CrossRefGoogle Scholar
  4. 4.
    K. M. M. Rao, K. M. Rao, and A. V. R. Prasad, Mater. Design, 31, 508 (2010).CrossRefGoogle Scholar
  5. 5.
    J. M. O. Scurlock, D. C. Dayton, and B. Hames, Biomass Bioenergy, 19, 229 (2000).CrossRefGoogle Scholar
  6. 6.
    Y. Liu and H. Hu, Fiber. Polym., 9, 735 (2008).CrossRefGoogle Scholar
  7. 7.
    A. P. Deshpande, M. B. Rao, and C. L. Rao, J. Appl. Polym. Sci., 76, 83 (2000).CrossRefGoogle Scholar
  8. 8.
    M. K. Basak, S. Chanda, S. K. Bhaduri, S. B. Mondal, and R. Nandi, Ind. Crop. Prod., 5, 173 (1996).CrossRefGoogle Scholar
  9. 9.
    F. Khan and S. R. Ahmad, Polym. Degrad. Stab., 52, 335 (1996).CrossRefGoogle Scholar
  10. 10.
    C. A. Hill, H. A. Khalil, and M. D. Hale, Ind. Crop. Prod., 8, 53 (1998).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, X. Xu, and X. Zhang, Surf. Interface Anal. 38, 1211 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Kwiatkowska, M. Starzycki, J. Zebrowski, J. Oszmianski, and J. Szopa, J. Biotechnol., 128, 919 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Kostic, B. Pejic, and P. Skundric, Bioresour. Technol., 99, 94 (2008).CrossRefGoogle Scholar
  14. 14.
    H. K. Sreenath, A. Shah, V. Yang, M. M. Gharia, and T. W. Jeffries, J. Ferment Bioeng., 81, 18 (1996).CrossRefGoogle Scholar
  15. 15.
    F. Brulmann, M. Leupin, and K. H. Erismann, J. Biotechnol., 76, 43 (2000).CrossRefGoogle Scholar
  16. 16.
    E. Joko, S. Tokuda, N. Kikumoto, J. Sugai, T. Hayashi, and M. Arai, Sen’I Gakkaishi., 58, 22 (2002).CrossRefGoogle Scholar
  17. 17.
    I. V. Weyenberg, T. C. Truong, B. Vangrimde, and I. Verpoest, Compos. Part A-Appl. S., 37, 1368 (2006).CrossRefGoogle Scholar
  18. 18.
    L. Liu, Q. Wang, Z. Xia, J. Yu, and L. Cheng, Ind. Crop. Prod., 31, 43 (2010).CrossRefGoogle Scholar
  19. 19.
    L. F. Liu, Q. L. Wang, L. D. Cheng, J. F. Qian, and J. Y. Yu, Fiber. Polym., 12, 95 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Ossola and Y. M. Galante, Enzyme Microb. Technol., 34, 177 (2004).CrossRefGoogle Scholar
  21. 21.
    J. A. Foulk, D. E. Akin, and R. B. Dodd, J. Nat. Fiber, 6, 1 (2009).CrossRefGoogle Scholar
  22. 22.
    H. S. S. Sharma, L. Whiteside, and K. Kernaghan, Enzyme Microb. Technol., 37, 386 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Mukherjee, P. K. Ganguly, and D. Sur, J. Text. Inst., 84, 348 (1993).CrossRefGoogle Scholar
  24. 24.
    R. Kozlowski, J. Batog, W. Konczewicz, M. M. Talarczyk, M. Muzyczek, N. Sedelnik, and B. Tanska, Biotechnol. Lett., 28, 761 (2006).CrossRefGoogle Scholar
  25. 25.
    W. Garner, “Textile Laboratory Manual, Fibres”, Vol. 5, Heywood Books, London, 1967.Google Scholar
  26. 26.
    JUS F.S2.212, Standard test method for fineness of textile fibers, 1963.Google Scholar
  27. 27.
    A. Koblyakov (Ed.), “Laboratory Practice in the Study of Textile Materials”, Mir Publishers, Moscow, 1989.Google Scholar
  28. 28.
    S. Yadav, P. K. Yadav, D. Yadav, and K. D. S. Yadav, Proc. Biochem., 44, 1 (2009).CrossRefGoogle Scholar
  29. 29.
    M. Kapoor, Q. K. Beg, B. Bhushan, K. Singh, K. S. Dadhich, and G.. S. Hoondal, Proc. Biochem., 6, 803 (2001).CrossRefGoogle Scholar
  30. 30.
    G. S. Hoondal, R. P. Tewari, R. Tewari, N. Dahiya, and Q. K. Beg, Appl. Microbiol. Biotechnol., 59, 409 (2002).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2012

Authors and Affiliations

  • Lifang Liu
    • 1
    • 2
  • Longdi Cheng
    • 1
    • 2
  • Liqian Huang
    • 1
    • 2
  • Jianyong Yu
    • 1
    • 3
  1. 1.The Key Lab of Textile Science & Technology, Ministry of EducationDonghua UniversityShanghaiChina
  2. 2.College of TextilesDonghua UniversityShanghaiChina
  3. 3.Modern Textile InstituteDonghua UniversityShanghaiChina

Personalised recommendations