Fibers and Polymers

, Volume 12, Issue 1, pp 57–64 | Cite as

Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics

  • Boram Yoon
  • Seungsin Lee


To develop waterproof breathable materials for diverse consumer applications, we used electrospinning to fabricate layered fabric systems with varying composite structures. Specifically, we developed layered fabric structures based on electrospun nanofiber webs with different levels of nanofiber web density, as well as different substrates and layer structures, and then examined the breathability and waterproofness of the material. The breathability and waterproofness of the layered fabric systems were compared with those of traditional waterproof breathable fabrics, including densely woven fabric, microporous membrane laminated fabric, and hydrophilic nonporous polyurethane coated fabric. Different breathability and barrier performance levels were achieved by varying the layer structure and substrates in the electrospun nanofiber web layered fabric systems. The uniformity of the nanofiber web and lamination process also affected the barrier and comfort performances. The comparison of waterproofness and breathability performances between the new materials and the traditional waterproof breathable materials revealed that the layered structures based on electrospun nanofiber webs provide a higher level of resistance to water penetration than densely woven fabrics and a higher degree of moisture vapor and air permeability than microporous membrane laminates and coated fabrics, with a proper selection of layer structure, substrate fabric, and lamination process.


Electrospinning Nanofiber web Breathable fabric Barrier Waterproofness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Lomax, J. Coated Fabrics, 15, 40 (1985).Google Scholar
  2. 2.
    A. Mukhopadhyay and V. K. Midha, J. Ind. Text., 37, 225 (2008).CrossRefGoogle Scholar
  3. 3.
    D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).CrossRefGoogle Scholar
  4. 4.
    X. Qin and S. Wang, J. Appl. Polym. Sci., 109, 951 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Martins, J. V. Araujo, R. L. Reis, and N. M. Neves, Nanomedicine, 2, 929 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Park, J. Moon, S. Lee, S. H. Kim, T. Zyung, and H. Y. Chu, Mater. Lett., 64, 255 (2010).CrossRefGoogle Scholar
  7. 7.
    S. Lee and S. K. Obendorf, Text. Res. J., 77, 696 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, “An Introduction of Electrospinning and Nanofibers”, pp.275–340, World Scientific Publishing Co. Pte. Ltd., London, 2005.CrossRefGoogle Scholar
  9. 9.
    Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Lee, D. Kimura, A. Yokoyama, K. Lee, J. C. Park, and I. Kim, Text. Res. J., 79, 1085 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Lee, D. Kimura, K. H. Lee, J. C. Park, and I. S. Kim, Text. Res. J., 80, 99 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Graham, M. Gogins, and H. Schreuder-Gibson, Int. Nonwovens J., 13, 21 (2004).Google Scholar
  13. 13.
    M. E. Whelan, L. E. MacHattie, A. C. Goodings, and L. H. Turl, Text. Res. J., 25, 197 (1955).CrossRefGoogle Scholar
  14. 14.
    L. I. Weiner, Text. Chem. Color., 2, 378 (1970).Google Scholar
  15. 15.
    S. Backer, Text. Res. J., 18, 650 (1948).CrossRefGoogle Scholar
  16. 16.
    A. Mukhopadhyay and V. K. Midha, J. Ind. Text., 38, 17 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Clothing and TextilesYonsei UniversitySeoulKorea

Personalised recommendations