Advertisement

Fibers and Polymers

, Volume 11, Issue 7, pp 967–975 | Cite as

Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect

  • Majid Montazer
  • Esfandiar Pakdel
  • Mohammad Bameni Moghadam
Article

Abstract

Photo yellowing of wool is one of the most important problems which have negative impacts on various aspects of wool prompting scientists to find a solution over the past decades. In this research the protective features of nano-titanium dioxide particles against UV on wool fabric were discussed and the color variations of wool samples after UV irradiation were measured and reported. It was shown that nano TiO2 is a suitable UV absorber and its effect depends on the concentration. Also, it was assumed that butane tetracarboxylic acid plays a prominent role as a cross-linking agent to stabilize the nano-titanium dioxide as well as a polyanion to maintain negative charges on the wool surface for higher nano particles absorption. Also the variables conditions were optimized using response surface methodology (RSM).

Keywords

Nano TiO2 Butane tetracarboxylic acid Wool UV absorber Response surface methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Kaariainen, T. O. Kaariainen, and D. C. Cameron, Thin Solid Films, 517, 6666 (2009).CrossRefGoogle Scholar
  2. 2.
    A. Fujishima and K. Honda, Nature, 238, 38 (1972).CrossRefGoogle Scholar
  3. 3.
    A. Fujishima and X. Zhang, C. R. Chim., 8, 750 (2005).Google Scholar
  4. 4.
    A. L. Castro, M. R. Nunes, M. D. Carvalho, L. P. Ferreira, J. C. Jumas, F. M. Costa, and M. H. Florencio, J. Solid State Chem., 182, 1838 (2009).CrossRefGoogle Scholar
  5. 5.
    I. K. Konstantinou and T. A. Albanis, Pure Appl. Chem., 72, 1256 (2000).Google Scholar
  6. 6.
    J. M. Herrmann, Catal. Today, 53, 115 (1999).CrossRefGoogle Scholar
  7. 7.
    H. U. Zhang, K. R. Millington, and X. Wang, Polym. Degrad. Stabil., 94, 278 (2009).CrossRefGoogle Scholar
  8. 8.
    X. D. Chen, Z. Wang, Z. F. Liao, Y. Mai, and M. Q. Zhang, Polym. Test., 26, 202 (2007).CrossRefGoogle Scholar
  9. 9.
    R. S. Davidson, J. Photoch. Photobiol. B, 33, 3 (1996).CrossRefGoogle Scholar
  10. 10.
    K. R. Millington and K. J. Kirschenbaum, Color. Technol., 118, 7 (2002).CrossRefGoogle Scholar
  11. 11.
    J. A. Maclaren and B. Milligan, “Wool Science”, Science Press, Maririckville, NSW, 1981.Google Scholar
  12. 12.
    H. Zahn, J. Fohles, M. M. Nienhaus, and M. Schwan, Ind. Eng. Chem. Prod. Res. Dev., 19, 496 (1980).CrossRefGoogle Scholar
  13. 13.
    D. J. Raven, C. Earland, and M. Little, Biochim. Biophys. Acta, 251, 96 (1971).Google Scholar
  14. 14.
    C. H. Nicholls, in “Developments in Polymer Photochemistry” (N. S. Allen Ed.), Vol. 1. pp.125–144, Applied Science Publishers, Barking, U.K., 1980.Google Scholar
  15. 15.
    K. R. Millington, Color. Technol., 122, 301 (2006).CrossRefGoogle Scholar
  16. 16.
    K. Schafer, “Investigation to Stabilize Optically Brightened Wool Against Light Damage”, Proceedings of 8th International Wool Textile Research Conference, Christchurch, NZ, Vol. IV, pp.250–259, 1990.Google Scholar
  17. 17.
    K. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. Tang, and W. P. Cheung, J. Mater. Chem., 16, 4567 (2006).CrossRefGoogle Scholar
  18. 18.
    W. A. Daoud, S. K. Leung, S. K. Tung, J. H. Xin, K. Cheuk, and K. Qi, Chem. Master., 20, 1242 (2008).CrossRefGoogle Scholar
  19. 19.
    M. Montazer and E. Pakdel, Photochem. Photobiol., 86, 255 (2010).CrossRefGoogle Scholar
  20. 20.
    M. Montazer and E. Pakdel, J. Text. Inst., accepted for publication.Google Scholar
  21. 21.
    C. C. Wang and C. C. Chen, J. Appl. Polym. Sci., 97, 2450 (2005).CrossRefGoogle Scholar
  22. 22.
    C. Q. Yang, Text. Res. J., 67, 334 (1997).Google Scholar
  23. 23.
    B. J. Trask-Morrel and A. Kottes, Text. Res. J., 67, 846 (1997).Google Scholar
  24. 24.
    W. Xu and T. W. Shyr, Text. Res. J., 70, 8 (2000).CrossRefGoogle Scholar
  25. 25.
    W. Xu and Y. Li, Text. Res. J., 70, 588 (2000).CrossRefGoogle Scholar
  26. 26.
    D. M. Lewis and B. Voncina, J. Appl. Polym. Sci., 66, 171 (1997).CrossRefGoogle Scholar
  27. 27.
    B. A. Kotte, Text. Chem. Color., 22, 63 (1990).Google Scholar
  28. 28.
    B. Voncina, Fibres Text. East. Eur., 1, 69 (1996).Google Scholar
  29. 29.
    D. C. Montgomery, “Design and Analysis of Experiments”, 4th ed., John Wiley & Sons, USA, 1996.Google Scholar
  30. 30.
    A. Ozer, G. Gurbuz, A. Calimli, and B. Korbahti, Chem. Eng. J., 146, 377 (2009).CrossRefGoogle Scholar
  31. 31.
    R. H. Myers and D. C. Montgomery, “Response Surface Methodology, Process and Product Optimization Using Designed Experiments”, 2nd ed., John Wiley and Sons, New York, p.235, 2002.Google Scholar
  32. 32.
    M. Amini, H. Younesi, N. Bahramifar, A. A. Z. Lorestani, F. Ghorbani, A, Daneshi, and M, Sharifzadeh, J. Hazard. Mater., 154, 694 (2008).CrossRefGoogle Scholar
  33. 33.
    A. Kantouch, A. Bendak, and M. Sadek, Text. Res. J., 48, 619 (1978).CrossRefGoogle Scholar
  34. 34.
    S. H. Hsieh, Z. K. Huang, Z. Z. Huang, and Z. S. Tseng, J. Appl. Polym. Sci., 94, 1999 (2004).CrossRefGoogle Scholar
  35. 35.
    G. E. P. Box and N. R. Draper, “Empirical Model-building and Response Surfaces”, John Wiley & Sons, New York, 1987.Google Scholar
  36. 36.
    D. Bas and I. H. Boyaci, J. Food. Eng., 78, 836 (2007).CrossRefGoogle Scholar
  37. 37.
    J. Zhu, F. Chen, J. Zhang, H. Chen, and M. Anpo, J. Photoch. Photobiol. A, 180, 196 (2006).CrossRefGoogle Scholar
  38. 38.
    H. Yang and S. Zhu, J. Appl. Polym. Sci., 92, 3201 (2004).CrossRefGoogle Scholar
  39. 39.
    W. Xu, G. Ke, J. Wu, and X. Wang, Eur. Polym. J., 42, 2168 (2006).CrossRefGoogle Scholar
  40. 40.
    E. Wojciechowska, M. Rom, A. Wochowicz, M. Wysocki, and A. W. Birczynska, J. Mol. Struct., 704, 315 (2004).CrossRefGoogle Scholar
  41. 41.
    A. T. Tu, R. J. H. Clark, and R. R. Hester (Eds.), “Spectroscopy of Biological Systems”, Wiley, New York, p.47, 1986.Google Scholar
  42. 42.
    W. Akhtar, H. G. M. Edwards, D. W. Farwell, and M. Nutbrown, Spectrochim. Acta A, 53, 1021 (1997).CrossRefGoogle Scholar
  43. 43.
    A. Pielesz, A. Wlochowicz, and W. Binias, Spectrochim. Acta A, 56, 1409 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Netherlands 2010

Authors and Affiliations

  • Majid Montazer
    • 1
  • Esfandiar Pakdel
    • 2
  • Mohammad Bameni Moghadam
    • 3
  1. 1.Textile DepartmentAmirkabir University of Technology, Center of Excellence in TextileTehranIran
  2. 2.Textile Department, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Alame Tabatabaie UniversityTehranIran

Personalised recommendations