Fibers and Polymers

, Volume 10, Issue 2, pp 167–176

Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology

  • Nasim Amiraliyan
  • Mahdi Nouri
  • Mohammad Haghighat Kish
Article

Abstract

Ultra fine fibers were electrospun from regenerated silk fibroin/formic acid solution. Effect of some process parameters on the morphology, diameter and variation in fiber diameter of electrospun fibers were experimentally investigated. Scanning electron microscope was used for the measurement of fiber diameter. Fibers with diameter ranging from 80 to 210 nm were collected depending on the solution concentration and the applied voltages. Response surface methodology (RSM) was used to obtain a quantitative relationship between selected electrospinning parameters and the average fiber diameters and its distribution. It was shown that concentration of silk fibroin solution had a significant effect on the fiber diameter and the standard deviation of the fiber diameter. Applied voltage had no significant effect on the fiber diameter and its standard deviation.

Keywords

Biopolymer Electron microscopy Morphology Protein Nanofiber Statistical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001).CrossRefGoogle Scholar
  2. 2.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  3. 3.
    S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 54, 2017 (2004).CrossRefGoogle Scholar
  4. 4.
    S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer, 46, 6128 (2005).CrossRefGoogle Scholar
  5. 5.
    G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richardmond, and D. L. Kalan, Biomaterials, 24, 401 (2003).CrossRefGoogle Scholar
  6. 6.
    Y. Z. Zhang, J. Venogopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, Polymer, 47, 2911 (2006).CrossRefGoogle Scholar
  7. 7.
    H. Nobomasa, “Structure of Silk Yarn, Part B: Chemical Structure and Processing of Silk Yarn”, Science Publishers Inc., USA, 2000.Google Scholar
  8. 8.
    Y. Wang, H. J. Kim, G. V. Novakovic, and D. L. Kaplan, Biomaterials, 27, 6064 (2006).CrossRefGoogle Scholar
  9. 9.
    I. C. Um, H. Y. Kweon, K. G. Lee, and Y. H. Park, International Biological Macromolecules, 33, 203 (2003).CrossRefGoogle Scholar
  10. 10.
    N. Aiba, S. Minoura, Y. Gotoh, M. Tsukada, and Y. J. Imai, Biomed. Mater. Res., 29, 1215 (1995).CrossRefGoogle Scholar
  11. 11.
    H. J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004).CrossRefGoogle Scholar
  12. 12.
    L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. J. Kaplan, Biomed. Mater. Res., 71A, 25 (2004).CrossRefGoogle Scholar
  13. 13.
    Y. Kawahara, A Nakayama, N. Matsumura, T. Yoshoka, and M. Tsuji, J. Appl. Polym. Sci., 107, 3681 (2007).CrossRefGoogle Scholar
  14. 14.
    S. Zarkoob, R. K. Eby, D. H. Renker, S. D. Hudson, D. Ertley, and W. W. Adams, Polymer, 45, 3973 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 45, 3701 (2004).CrossRefGoogle Scholar
  17. 17.
    J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H. Chen, and F. Ko, Polymer, 46, 1625 (2005).CrossRefGoogle Scholar
  18. 18.
    H. Wang, Y. P. Zhang, H. L. Shao, and X. C. Hu, J. Appl. Polym. Sci., 101, 961 (2006).CrossRefGoogle Scholar
  19. 19.
    J. X. Zho, H. L. Shao, and X. C. Hu, International J. of Biological Macromolecules, 41, 469 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Y. Gu, J. Ren, and G. J. Vancso, Euro. Polym. J., 41, 2559 (2005).CrossRefGoogle Scholar
  21. 21.
    D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett., 78, 1149 (2001).CrossRefGoogle Scholar
  23. 23.
    G. I. Taylor, Proc. R. Soc. London, Ser. A, 313, 453 (1969).CrossRefGoogle Scholar
  24. 24.
    V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer, 46, 7191 (2005).CrossRefGoogle Scholar
  25. 25.
    M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Polymer, 43, 3303 (2002).CrossRefGoogle Scholar
  26. 26.
    S. Koombhongse, W. Liu, and D. Renker, J. Polym. Sci.: Part B: Polym. Phys., 39, 2598 (2001).CrossRefGoogle Scholar
  27. 27.
    Submitted to J. Appl. Polym. Sci. Google Scholar

Copyright information

© The Korean Fiber Society and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  • Nasim Amiraliyan
    • 1
  • Mahdi Nouri
    • 1
  • Mohammad Haghighat Kish
    • 2
    • 1
  1. 1.Textile DepartmentGuilan UniversityRashtIran
  2. 2.Textile DepartmentAmirKabir University of TechnologyTehranIran

Personalised recommendations