Fibers and Polymers

, Volume 10, Issue 1, pp 77–82 | Cite as

Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading

  • Sun-Young Lee
  • D. Jagan Mohan
  • In-Aeh Kang
  • Geum-Hyun Doh
  • Soo Lee
  • Seong Ok Han


Nanocellulose was prepared by acid hydrolysis of microcrystalline cellulose (MCC) at different hydrobromic acid (HBr) concentrations. Polyvinyl alcohol (PVA) composite films were prepared by the reinforcement of nanocellulose into a PVA matrix at different filler loading levels and subsequent film casting. Chemical characterization of nanocelluloses was performed for the analysis of crystallinity (Xc), degree of polymerization (DP), and molecular weight (Mw). The mechanical and thermal properties of the nanocellulose reinforced PVA films were also measured for tensile strength and thermogravimetric analysis (TGA). The acid hydrolysis decreased steadily the DP and Mw of MCC. The crystallinity of MCC with 1.5 M and 2.5 M HBr showed a significant increase due to the degradation of amorphous domains in cellulose. Higher crystalline cellulose showed the higher thermal stability than MCC. From X-ray diffraction (XRD) analysis, nanocellulose samples showed the higher peak intensity than MCC cases. Reduction of MCC particle by acid hydrolysis was clearly observed from scanning electron microscope (SEM) images. The tensile and thermal properties of PVA composite films were significantly improved with the increase of the nanocellulose loading.


Nanocellulose PVA Morphology Tensile property TGA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Nishino, I. Matsuda, and K. Hirao, Macromolecules, 37, 7683 (2004).CrossRefGoogle Scholar
  2. 2.
    S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, and A. Dufresne, J. Mater. Sci., 36, 2107 (2001).CrossRefGoogle Scholar
  3. 3.
    D. Fengel and G. Wegner, “Wood-Chemistry, Ultrastructure, Reactions”, Walter de Gruyter, Berlin, New York, 1989.Google Scholar
  4. 4.
    D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, Angew Chem. Int. Ed., 44, 2 (2005).CrossRefGoogle Scholar
  5. 5.
    T. Zimmerman, E. Pöhler, and P. Schwaller, Adv. Eng. Mater., 12, 1156 (2005).CrossRefGoogle Scholar
  6. 6.
    K. Oksmann and M. Sain, “Cellulose Nanocomposites-Processing, Characterization and Properties”, American Chemical Society, Washington, DC, 2006.Google Scholar
  7. 7.
    T. Nishino, K. Takano, and K. J. Nakamae, Polym. Sci. B, 33, 1647 (1995).CrossRefGoogle Scholar
  8. 8.
    A. S. Azizi-Samir, F. Alloin, M. Paillet, and A. Dufresne, Macromolecules, 37, 4313 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Takagi and A. Asano, Compos. Part A, 39, 685 (2008).CrossRefGoogle Scholar
  10. 10.
    R. F. Nickerson and J. A. Habrle, Ind. Eng. Chem., 39, 1507 (1947).CrossRefGoogle Scholar
  11. 11.
    B. G. Ranby, Tappi, 35, 53 (1952).Google Scholar
  12. 12.
    V. Favier, H. Chanzy, and J. Y. Cavaille, Macromolecules, 28, 6365 (1995).CrossRefGoogle Scholar
  13. 13.
    M. N. Angles and A. Dufresne, Macromolecules, 35, 2190 (2002).CrossRefGoogle Scholar
  14. 14.
    A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005).CrossRefGoogle Scholar
  15. 15.
    K. E. Strawhwcker and E. Manias, Chem. Mater., 12, 2943 (2000).CrossRefGoogle Scholar
  16. 16.
    H. Matsuyama and J. F. Young, Chem. Mater., 11, 16 (1999).CrossRefGoogle Scholar
  17. 17.
    E. Tadd, A. Zeno, M. Zubris, N. Dan, and R. Tannenbaum, Macromolecules, 36, 6497 (2003).CrossRefGoogle Scholar
  18. 18.
    Y. Li, K. G. Neoh, and E. T. Kang, Polymer, 45, 8779 (2004).CrossRefGoogle Scholar
  19. 19.
    T. Ke and X. S. Sun, J. Polym. Environ., 11, 7 (2003).CrossRefGoogle Scholar
  20. 20.
    L. Segal, J. Creely, A. Martin, and C. Conrad, Text. Res. J., 29, 786 (1959).CrossRefGoogle Scholar
  21. 21.
    E. H. Immergut, B. G. Ranby, and H. Mark, Ind. Eng. Chem., 45, 2383 (1953).Google Scholar
  22. 22.
    A. Alemdar and M. Sain, Bioresou. Technol., 99, 1664 (2008).CrossRefGoogle Scholar
  23. 23.
    S. Y. Lee, H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee, Compos. Struct., 65, 459 (2004).CrossRefGoogle Scholar
  24. 24.
    V. Favier, R. Dendievel, G. Canova, J. Y. Cavaille, and P. Gilormini, Acta Mater., 45, 1557 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  • Sun-Young Lee
    • 3
  • D. Jagan Mohan
    • 3
  • In-Aeh Kang
    • 3
  • Geum-Hyun Doh
    • 3
  • Soo Lee
    • 1
    • 3
  • Seong Ok Han
    • 2
    • 3
  1. 1.Faculty of Chemical EngineeringChangwon National UniversityChangwonKorea
  2. 2.Nano Material Research CenterKorea Institute of Energy Research(KIER)DaejeonKorea
  3. 3.Division of Environmental Material Engineering, Department of Forest ProductsKorea Forest Research Institute(KFRI)SeoulKorea

Personalised recommendations