Advertisement

Fibers and Polymers

, Volume 9, Issue 5, pp 639–645 | Cite as

Characteristics of sounds generated from vapor permeable water repellent fabrics by low-speed frictions

  • Chunjeong Kim
  • Yoonjung Yang
  • Gilsoo ChoEmail author
Article

Abstract

To investigate the sound properties by low-speed frictions (0.2 m/s and 0.5 m/s) which occur when two fabrics are rubbed by wearer’s slow movement, six specimens are selected by cluster analysis among seventy-one vapor permeable water repellent fabrics for outdoor sportswear. Their sound spectra are obtained from the FFT analysis. Physical sound properties (LPT, ΔL, Δf) and Zwicker’s psychoacoustic parameters-loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z)-are calculated from the sound spectra. Mechanical properties of the fabrics are measured with the KES-FB system. The amplitudes of the sound spectra of all the specimens at 0.5 m/s are higher than those at 0.2 m/s throughout the entire range of frequencies. As the frictional speed changed from 0.2 m/s to 0.5 m/s, the LPT increases about 16 dB, and the loudness(Z) and fluctuation strength(Z) increase about 3 times and 2 times, respectively. The SMD and Weight at the two low frictional speeds are the important factors which affect the sound properties of vapor permeable water repellent fabrics.

Keywords

Fabric sound Low-speed friction Acoustic property Vapor permeable water repellent fabric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Heath, J. Coated Fabrics, 15, 78 (1985).Google Scholar
  2. 2.
    T. L. Vigo, “Textile Processing and Properties”, pp.206–219, Elsevier, Amsterdam, 1994.Google Scholar
  3. 3.
    E. Yi and G. Cho, Text. Res. J., 70, 828 (2000).CrossRefGoogle Scholar
  4. 4.
    E. Yi, G. Cho, Y. Na, and J. G. Casali, Text. Res. J., 71, 638 (2002).CrossRefGoogle Scholar
  5. 5.
    E. Yi and G. Cho, J. Korean Soc. Clothing Text., 25, 1590 (2001).Google Scholar
  6. 6.
    C. Kim, G. Cho, K. Hong, and H. J. Shim, Fiber. Polym., 4, 199 (2003).CrossRefGoogle Scholar
  7. 7.
    C. Kim, G. Cho, and Y. Na, Text. Res. J., 72, 555 (2002).CrossRefGoogle Scholar
  8. 8.
    C. Kim, G. Cho, H. Yoon, and S. Park, Text. Res. J., 73, 685 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Cho and G. Cho, Text. Res. J., 77, 29 (2007).CrossRefGoogle Scholar
  10. 10.
    G. Cho, J. Cho, C. Kim, and J. Ha, Text. Res. J., 75, 312 (2005).CrossRefGoogle Scholar
  11. 11.
    G. Cho, C. Kim, J. Cho, and J. Ha, Fiber. Polym., 6, 89 (2005).CrossRefGoogle Scholar
  12. 12.
    S. Cho, E. Yi, and G. Cho, Fiber. Polym., 7, 450 (2006).CrossRefGoogle Scholar
  13. 13.
    J. Cho and G. Cho, “Proc. of the 2nd International Conference on Clothing and Textile”, p.72, 2006.Google Scholar
  14. 14.
    G. Cho and E. Yi, Korea Patent, 10-0671017 (2007).Google Scholar
  15. 15.
  16. 16.
    E. Zwicker and H. Fastle, “Psychoacoustics: Facts and Models”, pp.203–264, Springer-Verlag, Berlin, Germany, 1990.Google Scholar
  17. 17.
    K. H. E. Kroemer, H. B. Kroemer, and K. E. Kroemer-Elbert, “Ergonomics: How to Design for Ease and Efficiency”, pp.196–214, Prentice Hall, N. J., 1994.Google Scholar

Copyright information

© The Korean Fiber Society and Springer-Verlag Berlin Heidelberg GmbH 2008

Authors and Affiliations

  1. 1.Human Ecology Research InstituteYonsei UniversitySeoulKorea
  2. 2.Department of Clothing and TextilesYonsei UniversitySeoulKorea

Personalised recommendations