Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

  • 27 Accesses


In this paper we study Hardy inequalities in the Heisenberg group \({\mathbb {H}}^n\), with respect to the Carnot–Carathéodory distance \(\delta \) from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than \(n^2 = (Q-2)^2/4\). Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along \(\nabla \!_{\mathbb {H}}\delta \). This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones \(C_\Sigma \) with base \(\Sigma \subset {\mathbb {S}}^{2n}\), even when \(\Sigma \) degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Inequality (6) follows also from [3, 4], using the fact that the Korányi gauge is equivalent to \(\delta \).


  1. 1.

    Adami, R., Boscain, U., Franceschi, V., Prandi, D.: Point interactions for 3D sub-Laplacians. arXiv:1902.05475 (2019)

  2. 2.

    Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2019)

  3. 3.

    Bahouri, H., Chemin, J.-Y., Gallagher, I.: Refined Hardy inequalities. Sup. Pisa Cl. Sci V(5), 375–391 (2006)

  4. 4.

    Bahouri, H., Chemin, J.Y., Xu, C.J.: Trace and trace lifting theorems in weighted sobolev spaces. J. Inst. Math. Jussieu 4(4), 509–552 (2005)

  5. 5.

    Biggs, R., Nagy, P.T.: On Sub-Riemannian and Riemannian structures on the Heisenberg Groups. J. Dyn. Control Syst. 22(3), 563–594 (2016)

  6. 6.

    Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, vol. 259. Birkhäuser Verlag, Basel (2007)

  7. 7.

    Ciatti, P., Cowling, M.G., Ricci, F.: Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math. 277, 365–387 (2015)

  8. 8.

    Ciatti, P., Ricci, F., Sundari, M.: Heisenberg–Pauli–Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215(2), 616–625 (2007)

  9. 9.

    D’Ambrosio, L.: Hardy inequalities related to Grushin type operators. Proc. Am. Math. Soc. 132(3), 725–734 (2004)

  10. 10.

    D’Ambrosio, L.: Some Hardy inequalities on the Heisenberg group. Differ. Uravn. 40(4), 509–521 (2004)

  11. 11.

    D’Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(3), 451–486 (2005)

  12. 12.

    Danielli, D., Garofalo, N., Phuc, N.C.: Hardy–Sobolev type inequalities with sharp constants in Carnot–Carathéodory spaces. Potential Anal. 34(3), 223–242 (2011)

  13. 13.

    Fall, M.M., Musina, R.: Hardy–Poincaré inequalities with boundary singularities. Proc. R. Soc. Edinb. Sect. A 142(4), 769–786 (2012)

  14. 14.

    Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. l’inst. Fourier 40(2), 313–356 (1990)

  15. 15.

    Goldstein, J.A., Kombe, I.: The Hardy inequality and nonlinear parabolic equations on Carnot groups. Nonlinear Anal. 69(12), 4643–4653 (2008)

  16. 16.

    Goldstein, J.A., Kombe, I., Yener, A.: A unified approach to weighted Hardy type inequalities on Carnot groups. Discret. Contin. Dyn. Syst. 37(4), 2009–2021 (2017)

  17. 17.

    Kogoj, A.E., Sonner, S.: Hardy type inequalities for \(\Delta _{\lambda }\)-Laplacians. Complex Var. Elliptic Equ. 61(3), 422–442 (2016)

  18. 18.

    Larson, S.: Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group. Bull. Math. Sci. 6(3), 335–352 (2016)

  19. 19.

    Lehrbäck, J.: Hardy inequalities and Assouad dimensions. J. d’Anal. Math. 131(1), 367–398 (2017)

  20. 20.

    Liu, H.-X., Luan, J.-W.: Hardy-type inequalities on a half-space in the Heisenberg group. J. Inequal. Appl. 347, 645–651 (2013)

  21. 21.

    Luan, J.-W., Yang, Q.-H.: A Hardy type inequality in the half-space on \({\mathbb{R}}^n\) and Heisenberg group. J. Math. Anal. Appl. 347(2), 645–651 (2008)

  22. 22.

    Monroy-Pérez, F., Anzaldo-Meneses, A.: Optimal control on the Heisenberg Group. J. Dyn. Control Syst. 5(4), 473–499 (1999)

  23. 23.

    Monti, R.: Rearrangements in metric spaces and in the Heisenberg group. J. Geom. Anal. 24(4), 1673–1715 (2014)

  24. 24.

    Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129(12), 3623–3630 (2001)

  25. 25.

    Prandi, D., Rizzi, L., Seri, M.: A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators. J. Differ. Geom. 111(2), 339–379 (2019)

  26. 26.

    Ruszkowski, B.: Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes. Math. Scand. 123(1), 101–120 (2018)

  27. 27.

    Ruzhansky, M., Suragan, D.: Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups. Adv. Math. 308, 483–528 (2017)

  28. 28.

    Ruzhansky, M., Suragan, D., Suragan, D.: Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups. Adv. Math. 317(April 2016), 799–822 (2017)

  29. 29.

    Yang, Q.-H.: Hardy type inequalities related to Carnot–Carathéodory distance on the Heisenberg group. Proc. Am. Math. Soc. 141(1), 351–362 (2013)

Download references


We thank N. Garofalo and L. Rizzi for fruitful discussions on the topic. We also thank Q. Yang for his kind replies to our questions. The authors acknowledge the support of ANR-15-CE40-0018 project SRGI - Sub-Riemannian Geometry and Interactions and of a public grant overseen by the French National Research Agency (ANR) as part of the Investissement d’avenir program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. The first author acknowledges the support received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 794592.

Author information

Correspondence to Valentina Franceschi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: An Euclidean Non-radial Hardy Inequality

Appendix A: An Euclidean Non-radial Hardy Inequality

In this section we present an Euclidean version of Theorem 5. Let \(x=(x',x_d)\in {{\,\mathrm{{\mathbb {R}}}\,}}^{d-1}\times {{\,\mathrm{{\mathbb {R}}}\,}}\). We consider coordinates \((t,\varpi ,\varphi )\in {\mathbb {R}}_+\times {\mathbb {S}}^{d-2}\times (-\pi /2,\pi /2)\) in \({{\,\mathrm{{\mathbb {R}}}\,}}^d\), defined by

$$\begin{aligned} (x', x_d) = t(\varpi \cos \varphi , \sin \varphi ). \end{aligned}$$

In this case, the polar vector field is \(\Xi =\frac{1}{t}\partial _\varphi \), which is unit thanks to the fact that

$$\begin{aligned} \varphi = \arctan \frac{x_d}{\Vert x'\Vert }. \end{aligned}$$

Moreover, the volume form becomes \(t^{d-1}\cos ^{d-2}\varphi \,\mathrm{{d}}t\,\mathrm{{d}}\varphi \,\mathrm{{d}}\sigma (\varpi )\), where \(\mathrm{{d}}\sigma \) is the standard volume on \({\mathbb {S}}^{d-2}\).

Let us consider a spherical cap \(\Sigma \subset {\mathbb {S}}_+^{d-1}\), and let \(C_\Sigma \) be the associated Euclidean cone. We can always assume it to be centered on the d-th coordinate axis, i.e., \(C_\Sigma =\{\varphi >a_\Sigma \}\) for some \(a_\Sigma \in (0,\pi /2)\). We have the following.

Theorem 24

Let \(d\ge 3\). Then, letting \(\psi (x',x_d)=x_d/\Vert x'\Vert \), we have

$$\begin{aligned} \int _{C_\Sigma } \frac{|\langle \nabla u, \Xi \rangle |^2}{\psi }\,\mathrm{{d}}x \ge \left( \frac{d-2}{2}\right) ^2 \int _{C_\Sigma } \frac{|u|^2}{|x|^2}\psi \,\mathrm{{d}}x, \qquad \forall u \in C^\infty _c(C_\Sigma ). \end{aligned}$$

Moreover, the inequality is sharp.


Let \(v\in C^\infty _c(C_\Sigma )\). An integration by part yields

$$\begin{aligned} \begin{aligned} \int _{C_\Sigma } \langle \nabla v, \Xi \rangle \,\mathrm{{d}}x&= \int _0^{+\infty } t^{d-1}\,\mathrm{{d}}t \int _{{\mathbb {S}}^{d-2}}\mathrm{{d}}\sigma (\varpi )\int _{a_\Sigma }^{\pi /2} \frac{1}{t}\partial _\varphi v \cos ^{d-2}\varphi \,\mathrm{{d}}\varphi \\&= (d-2)\int _0^{+\infty } t^{d-1}\,\mathrm{{d}}t \int _{{\mathbb {S}}^{d-2}}\mathrm{{d}}\sigma (\varpi )\int _{a_\Sigma }^{\pi /2} \frac{v}{t} \cos ^{d-3}\varphi \sin \varphi \,\mathrm{{d}}\varphi \\&= (d-2)\int _{C_\Sigma } \frac{v}{|x|}\psi \,\mathrm{{d}}x. \end{aligned}\nonumber \\ \end{aligned}$$

Here, we used that \(\psi =\tan \varphi \) in polar coordinates, thanks to (115). The desired inequality then follows from the above, choosing \(v = u^2/t\) and applying Cauchy–Schwarz on the l.h.s..

To obtain the sharpness, observe that choosing \(u(t,\varphi ) = \eta (t)(\cos \varphi )^\gamma \) where \(\eta (t)\) is any cut-off with compact support and \(\gamma \in {\mathbb {R}}\), we have

$$\begin{aligned} \int _{C_\Sigma } \frac{|\langle \nabla u, \Xi \rangle |^2}{\psi }\,\mathrm{{d}}x = \gamma ^2 \int _{C_\Sigma } \frac{|u|^2}{|x|^2}\psi \,\mathrm{{d}}x. \end{aligned}$$

Direct computations show that the last integral is finite if and only if \(\gamma >\frac{2-d}{2}\). Then, the statement follows via a cut-off argument as the one in the proof of Theorem 5, letting \(\gamma \rightarrow \left( \frac{2-d}{2}\right) ^+\). \(\square \)

Since the function \(\psi \) is unbounded on the vertical axis \(\{x' =0\}\), the above does not yield any upper bound on \(c^ {\perp ,\text {eucl}}_n(\Sigma )\). Indeed, we can only recover the following lower bound, which is not sharp but correctly shows that \(c^ {\perp ,\text {eucl}}_n(\Sigma )\rightarrow +\infty \) as \(\Sigma \) degenerates to a point (i.e., \(a_\Sigma \uparrow \pi /2\)).

Corollary 25

Let \(\Sigma = \{\varphi >a_\Sigma \}\subset {\mathbb {S}}^{d-1}\) be a spherical cap. Then,

$$\begin{aligned} c^ {\perp ,\text {eucl}}_n(\Sigma )\ge \left( \frac{d-2}{2}\right) ^2 \tan ^2 a_\Sigma . \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franceschi, V., Prandi, D. Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group. J Geom Anal (2020). https://doi.org/10.1007/s12220-020-00360-y

Download citation


  • Heisenberg group
  • Hardy-type inequalities
  • Carnot–Carathéodory distance

Mathematics Subject Classification

  • 35R03
  • 35A23
  • 53C17