Advertisement

Fractional Generalized Logistic Equations with Indefinite Weight: Quantitative and Geometric Properties

  • Alessio Marinelli
  • Dimitri MugnaiEmail author
Article
  • 12 Downloads
Part of the following topical collections:
  1. Perspectives of Geometric Analysis in PDEs

Abstract

We deal with fractional generalized logistic problems in presence of a signed and unbounded weight. We describe the first eigenpair of the underlying operators and we show a bifurcation result for positive solutions, which are proved to be unique. A symmetry result is established under suitable geometric constraints.

Keywords

Fractional Laplacians Indefinite potential Principal eigenfunction Positive solutions Axial symmetry 

Mathematics Subject Classification

35J20 35J65 58E05 

Notes

References

  1. 1.
    Alama, S., Tarantello, G.: Elliptic problems with nonlinearities indefinite in sign. J. Funct. Anal. 141, 159–215 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alves, M.O., Pimenta, M.T.O., Suárez, A.: Lotka-Volterra models with fractional diffusion. Proc. R. Soc. Edinb. A 147, 505–528 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.: The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22, 2813–2844 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berestycki, H., Roquejoffre, J.-M., Rossi, L.: The periodic patch model for population dynamics with fractional diffusion. Discret. Contin. Dyn. Syst. S 4, 1–13 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balackrishnan, A.V.: Fractional powers of closed operators an the semigroups generated by them. Pac. J. Math. 10, 419–437 (1960)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (2016)Google Scholar
  9. 9.
    Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cabré, X., Roquejoffre, J.M.: The Influence of Fractional Diffusion in Fisher-KPP Equations. Commun. Math. Phys. 320, 679–722 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32, 1245–1260 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Caffarelli, L., Vasseur, A.: Drift diffusion equation with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2(171), 903–930 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)zbMATHGoogle Scholar
  14. 14.
    Caffarelli, L., Dipierro, S., Valdinoci, E.: A logistic equation with nonlocal interactions. Kinet. Relat. Models 10, 141–170 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Cantrell, R.S., Cosner, C., Hutson, V.: Ecological models, permanence and spatial heterogeneity. Rocky Mt. J. Math. 26, 1–35 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cantrell, R.S., Cosner, C., Hutson, V.: Spatial Ecology via Reaction-diffusion Equations. Wiley, New York (2003)zbMATHGoogle Scholar
  17. 17.
    Carboni, G., Mugnai, D.: On some fractional equations with convex-concave and logistic-type nonlinearities. J. Differ. Equ. 262, 2393–2413 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Costa, D.G., Drábek, P., Tehrani, H.T.: Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 33, 1597–1610 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dipierro, S., Figalli, A., Valdinoci, E.: Strongly Nonlocal Dislocation Dynamics in Crystals. Commun. Partial Differ. Equ. 39, 2351–2387 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Du, Y., Ma, L.: Logistic type equations on \(\mathbb{R}^N\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 2(64), 107–124 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. Commun. Contemp. Math. 16(01), 1350023 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schroedinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh A 142, 1237–1262 (2012)zbMATHCrossRefGoogle Scholar
  24. 24.
    Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)zbMATHCrossRefGoogle Scholar
  25. 25.
    Fragnelli, G., Mugnai, D., Papageorgiou, N.S.: Robin problems for the \(p\)-Laplacian with gradient dependence. Discret. Contin. Dyn. Syst. S 12, 287–295 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Franzina, G., Palatucci, G.: Fractional \(p\)-eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Girao, P., Tehrani, H.: Positive solutions to logistic type equations with harvesting. J. Differ. Equ. 247, 574–595 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Marinelli, A., Mugnai, D.: Generalized logistic equation with indefinite weight driven by the square root of the Laplacian. NonLinearity 27, 1–16 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Massaccesi, A., Valdinoci, E.: Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol. 74, 113–147 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Molica Bisci, G., Radulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2016)zbMATHCrossRefGoogle Scholar
  32. 32.
    Montefusco, E., Pellacci, B., Verzini, G.: Fractional diffusion with Neumann boundary conditions: the logistic equation. Discret. Contin. Dyn. Syst. B 18, 2175–2202 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mugnai, D., Papageorgiou, N.: Bifurcation for positive solutions of nonlinear diffusive logistic equations in \(\mathbb{R}^N\) with indefinite weight. Indiana Univ. Math. J. 63, 1397–1418 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Neand, Y., Nepomnyashchy, A.A.: Turing instability of anomalous reaction-anomalous diffusion systems. Eur. J. Appl. Math. 19, 329–349 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Pelcé, P.: New Visions on Form and Growth. Oxford University, New York (2004)Google Scholar
  36. 36.
    Radulescu, V., Repovs, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. 75, 1524–1530 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. Calc. Var. Partial Differ. Equ. 50, 723–750 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ruiz, D., Suarez, A.: Existence and uniqueness of positive solution of a logistic equation with nonlinear gradient term. Proc. R. Soc. Edinb. A 137, 555–566 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33, 2105–2137 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133–154 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Shi, J., Shivaji, R.: Semilinear elliptic equations with generalized cubic nonlinearities. In: Proceedings of the Fifth International Conference on Dynamical Systems on Difference Equations, Pomona, CA (2005)Google Scholar
  43. 43.
    Song, R., Vondraček, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135, 191–201 (1999)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Torres Ledesma, C.E.: Existence and symmetry result for fractional \(p-\)Laplacian in \(\mathbb{R}^N\). Commun. Pure Appl. Anal. 16, 99–113 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Vazquez, J.L.: Nonlinear diffusion with fractional laplacian operators. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations: The Abel Symposium 2010, pp. 271–298. Springer, New York (2012)CrossRefGoogle Scholar
  47. 47.
    Yang, R., Lü, Z.: The properties of positive solutions to semilinear equations involving the fractional Laplacian. Commun. Pure Appl. Anal. 18, 1073–1089 (2019)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TrentoPovoItaly
  2. 2.Department of Ecology and Biology (DEB)Tuscia University, Largo dell’UniversitàViterboItaly

Personalised recommendations