Advertisement

The Heisenberg Group and Its Relatives in the Work of Elias M. Stein

  • Gerald B. FollandEmail author
Article
  • 51 Downloads

Abstract

We survey the work of Elias M. Stein in the field of analysis on the Heisenberg group and other nilpotent Lie groups, together with its applications to complex analysis in several variables and partial differential equations.

Keywords

Harmonic analysis Heisenberg group Homogeneous group Nilpotent Lie group 

Mathematics Subject Classification

Primary 43A80 Secondary 32V20 35B65 42B20 42B37 

Notes

References

  1. 1.
    Chang, D.-C., Nagel, A., Stein, E.M.: Estimates for the \({\bar{\partial }}\)-Neumann problem in pseudoconvex domains of finite type in \({\mathbb{C}}^2\). Acta Math. 169, 153–228 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Lecture Notes in Math No. 242. Springer, Berlin (1971)zbMATHCrossRefGoogle Scholar
  3. 3.
    Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Folland, G.B.: Subelliptic operators and function spaces on nilpotent Lie groups. Arkiv Mat. 13, 161–207 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Folland, G.B., Stein, E.M.: Estimates for the \({\bar{\partial }}_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)zbMATHCrossRefGoogle Scholar
  6. 6.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  7. 7.
    Geller, D., Stein, E.M.: Estimates for singular convolution operators on the Heisenberg group. Math. Ann. 267, 1–15 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Greiner, P.C., Kohn, J.J., Stein, E.M.: Necessary and sufficient conditions for solvability of the Lewy equation. Proc. Nat. Acad. Sci. USA 72, 3287–3289 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Greiner, P.C., Stein, E.M.: Estimates for the \({\bar{\partial }}\)-Neumann Problem. Princeton University Press, Princeton (1977)zbMATHGoogle Scholar
  10. 10.
    Hörmander, L.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Knapp, A.W., Stein, E.M.: Singular integrals and the principal series. Proc. Nat. Acad. Sci. USA 63, 281–284 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Knapp, A.W., Stein, E.M.: Intertwining operators for semisimple groups. Ann. Math. 93, 489–578 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kohn, J.J.: Boundaries of complex manifolds. In: Aeppli, A., Calabi, E., Röhrl, H. (eds.) Proceedings of the Conference on Complex Analysis. Minneapolis 1964, pp. 81–94. Springer, Berlin (1965)CrossRefGoogle Scholar
  14. 14.
    Korányi, A., Vági, S.: Singular integrals in homogeneous spaces and some problems of classical analysis. Ann. Scuola Norm. Sup. Pisa 25, 575–648 (1971)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lewy, H.: An example of a smooth linear partial differential equation without solution. Ann. Math. 66, 155–158 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman kernel on convex domains of finite type. Duke Math. J. 73, 177–199 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    McNeal, J.D., Stein, E.M.: The Szegő projection on convex domains. Math. Zeit. 224, 519–553 (1997)zbMATHCrossRefGoogle Scholar
  18. 18.
    Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups, I. Invent. Math. 119, 199–233 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Müller, D., Ricci, F., Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups, II. Math. Zeit. 221, 267–291 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Müller, D., Stein, E.M.: On spectral multipliers for Heisenberg and related groups. J. Math. Pures Appl. 73, 413–440 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Müller, D., Stein, E.M.: \(L^p\) estimates for the wave equation on the Heisenberg group. Rev. Mat. Iberoam. 15, 297–334 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    Nagel, A., Ricci, F., Stein, E.M.: Fundamental solutions and harmonic analysis on nilpotent groups. Bull. Am. Math. Soc. 23, 139–144 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nagel, A., Ricci, F., Stein, E.M.: Harmonic analysis and fundamental solutions on nilpotent Lie groups. In: Sadosky, C. (ed.) Analysis and Partial Differential Equations, pp. 249–275. Marcel Dekker, New York (1990)Google Scholar
  24. 24.
    Nagel, A., Ricci, F., Stein, E.M.: Singular integrals with flag kernels and analysis on quadratic CR manifolds. J. Funct. Anal. 181, 29–118 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Nagel, A., Ricci, F., Stein, E.M., Wainger, S.: Singular integrals with flag kernels on homogeneous groups, I. Rev. Mat. Iberoam. 28, 631–722 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Nagel, A., Ricci, F., Stein, E.M., Wainger, S.: Algebras of singular integral operators with kernels controlled by multiple norms. Mem. Am. Math. Soc. 256 (2018). https://doi.org/10.1090/memo/1230 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Nagel, A., Rosay, J.P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegő kernels in \({\mathbb{C}}^2\). Ann. Math. 129, 113–149 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Nagel, A., Stein, E.M.: Lectures on Pseudo-Differential Operators. Princeton University Press, Princeton (1979)zbMATHGoogle Scholar
  29. 29.
    Nagel, A., Stein, E.M.: The \(\square _b\)-heat equation on pseudoconvex manifolds of finite type in \({\mathbb{C}}^2\). Math. Zeit. 238, 37–88 (2001)zbMATHCrossRefGoogle Scholar
  30. 30.
    Nagel, A., Stein, E.M.: The \({\bar{\partial }}_b\)-complex on decoupled boundaries in \({\mathbb{C}}^n\). Ann. Math. 164, 649–713 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Nagel, A., Stein, E.M., Wainger, S.: Boundary behavior of functions holomorphic in domains of finite type. Proc. Natl. Acad. Sci. USA 78, 6596–6599 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegő projections on strongly pseudo-convex domains. Duke Math. J. 44, 695–704 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals I: oscillatory integrals. J. Funct. Anal. 73, 179–194 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals II: singular kernels supported on submanifolds. J. Funct. Anal. 78, 56–84 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals III: fractional integration along manifolds. J. Funct. Anal. 86, 360–389 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Prinecton (1970)zbMATHGoogle Scholar
  40. 40.
    Stein, E.M.: Boundary Behavior of Holomorphic Functions of Several Complex Variables. Princeton University Press, Princeton (1972)zbMATHGoogle Scholar
  41. 41.
    Stein, E.M.: Singular integrals and estimates for the Cauchy–Riemann equations. Bull. Am. Math. Soc. 79, 440–445 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Stein, E.M.: An example on the Heisenberg group related to the Lewy operator. Invent. Math. 69, 209–216 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables I. The theory of \(H^p\) spaces. Acta Math. 103, 25–62 (1960)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations