Advertisement

Holomorphic Invariants of Bounded Domains

  • Fusheng Deng
  • Zhiwei Wang
  • Liyou ZhangEmail author
  • Xiangyu Zhou
Article
  • 123 Downloads
Part of the following topical collections:
  1. Invariant Metrics, an Important Tool in Several Complex Variables

Abstract

In this survey paper, we give a review of some recent developments on holomorphic invariants of bounded domains, which include squeezing functions, Fridman’s invariants, p-Bergman kernels, and spaces of \(L^p\) integrable holomorphic functions.

Keywords

Squeezing function Fridman invariant p-Bergman kernel Plurisubharmonic variation 

Mathematics Subject Classification

32F45 32H02 

Notes

Acknowledgements

The authors thank the referee for drawing the references [40] and [3] to our attention. The first author is partially supported by the University of Chinese Academy of Sciences and by NSFC Grants. The second author was partially supported by the Fundamental Research Funds for the Central Universities and by the NSFC Grant NSFC-11701031. The third and fourth authors are partially supported by NSFC Grants.

References

  1. 1.
    Alexander, H.: Extremal holomorphic imbeddings between the ball and polydisc. Proc. Am. Math. Soc. 68(2), 200–202 (1978)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Avelin, B., Hed, L., Persson, H.: A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity (English summary). Potential Anal. 43(3), 531–545 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Balakumar, G.P., Mahajan, P., Verma, K.: Bounds for invariant distances on pseudoconvex Levi corank one domains and applications. Ann. Fac. Sci. Toulouse Math. (6) 24(2), 281–388 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berndtsson, B.: Complex Brunn–Minkowski theory and positivity of vector bundles (e-preprint). arXiv:1807.05844
  5. 5.
    Berndtsson, B.: Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains. Ann. Inst. Fourier (Grenoble) 56(6), 1633–1662 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. (2) 169(2), 531–560 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Berndtsson, B., Păun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145(2), 341–378 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Berndtsson, B., Păun, M.: Bergman kernels and subadjunction. arXiv:1002.4145
  9. 9.
    Błocki, Z.: Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent. Math. 193(1), 149–158 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, B.-Y.: The Bergman metric on Teichmüller space. Int. J. Math. 15(10), 1085–1091 (2004)zbMATHGoogle Scholar
  11. 11.
    Chen, B.-Y., Zhang, J.: On graphs of holomorphic motions (private communication)Google Scholar
  12. 12.
    Chi, C.-Y.: Pseudonorms and theorems of Torelli type. J. Differ. Geom. 104(2), 239–273 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chi, C.-Y., Yau, S.-T.: A geometric approach to problems in birational geometry. Proc. Natl Acad. Sci. USA 105(48), 18696–18701 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Demailly, J.P.: Mesures de Monge-Ampére et mesures pluriharmoniques. Math. Z. 194, 519–564 (1987)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Deng, F., Zhang, X.: Fridman’s invariant, squeezing functions, and exhausting domains (e-preprint). arXiv:1810.12724
  16. 16.
    Deng, F., Guan, Q., Zhang, L.: Some properties of squeezing functions on bounded domains. Pac. J. Math. 257, 319–341 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Deng, F., Guan, Q., Zhang, L.: Properties of squeezing functions and global transformations of bounded domains. Trans. Am. Math. Soc. 368, 2679–2696 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Deng, F., Fornaess, J.E., Wold, E.F.: Exposing boundary points of strongly pseudoconvex subvarieties in complex spaces. Proc. Am. Math. Soc. 146(6), 2473–2487 (2018)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Deng, F., Wang, Z., Zhang, L., Zhou, X.: New characterization of plurisubharmonic functions and positivity of direct image sheaves (e-preprint). arXiv:1809.10371
  20. 20.
    Deng, F., Wang, Z., Zhang, L., Zhou, X.: Linear invariants of complex manifolds and their plurisubharmonic variations (e-preprint). arXiv:1901.08920
  21. 21.
    Diederich, K., Fornaess, J.E.: Comparison of the Bergman and the Kobayashi metric. Math. Ann. 254, 257–262 (1980)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Diederich, K., Fornaess, J.E.: Boundary behavior of the Bergman metric. Asian J. Math. 22(2), 291–298 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Diederich, K., Fornaess, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal. 24(4), 2124–2134 (2014)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Diederich, K., Fornaess, J.E., Wold, E.F.: A characterization of the ball in \({\mathbb{C}}^n\). Int. J. Math. 27(9), 1650078 (2016)zbMATHGoogle Scholar
  25. 25.
    Fornaess, J.E., Rong, F.: Estimate of the squeezing function for a class of bounded domains. Math. Ann. 371(3–4), 1087–1094 (2018)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fornaess, J.E., Shcherbina, N.: A domain with non-plurisubharmonic squeezing function. J. Geom. Anal. 28(1), 13–21 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Fornaess, J.E., Wold, E.F.: An estimate for the squeezing function and estimates of invariant metrics. In: Complex Analysis and Geometry. Springer Proceedings in Mathematics and Statistics, vol. 144, pp. 135–147. Springer, Tokyo (2015)Google Scholar
  28. 28.
    Fornaess, J.E., Wold, E.F.: A non-strictly pseudoconvex domain for which the squeezing function tends to 1 towards the boundary. Pac. J. Math. 297(1), 79–86 (2018)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Frankel, S,: Applications of affine geometry to geometric function theory in Several Complex Variables. Proc. Symp. Pure Math. 52(Part 2), 183–208 (1991)zbMATHGoogle Scholar
  30. 30.
    Fridman, B.L.: Biholomorphic invariants of a hyperbolic manifold and some application. Trans. Am. Math. Soc. 276, 685–698 (1983)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Guan, Q., Zhou, X.: A solution of an \(L^2\) extension problem with an optimal estimate and applications. Ann. Math. (2) 181(3), 1139–1208 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hacon, C., Popa, M., Schnell, C.: Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Paun. In: Local and Global Methods in Algebraic Geometry. Contemporary Mathematics, vol. 712, , pp. 143–195. American Mathematical Society, Providence (2018)Google Scholar
  33. 33.
    Hosono, G., Inayama, T.: A converse of Hörmander’s \(L^2\)-estimate and new positivity notions for vector bundles (e-preprint). arXiv:1901.02223
  34. 34.
    Joo, S., Kim, K.-T.: On boundary points at which the squeezing function tends to one. J. Geom. Anal. 28(3), 2456–2465 (2018)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Kim, K.-T., Zhang, L.: On the uniform squeezing property of bounded convex domains in \(\mathbb{C}^n\). Pac. J. Math. 282(2), 341–358 (2016)zbMATHGoogle Scholar
  36. 36.
    Lakic, N.: An isometry theorem for quadratic differentials on Riemann surfaces of finite genus. Trans. Am. Math. Soc. 349(7), 2951–2967 (1997)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces I. J. Differ. Geom. 68(3), 571–637 (2004)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann Surfaces II. J. Differ. Geom. 69, 163–216 (2005)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Mahajan, P., Verma, K.: A comparison of two biholomorphic invariants (e-preprint). arXiv:1807.09451v2
  40. 40.
    Mahajan, P., Verma, K.: Some aspects of the Kobayashi and Carathéodory metrics on pseudoconvex domains. J. Geom. Anal. 22(2), 491–560 (2012)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Markovic, V.: Biholomorphic maps between Teichmüller spaces. Duke Math. J. 120(2), 405–431 (2003)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Nikolov, N., Andreev, L.: Boundary behavior of the squeezing functions of \({\mathbb{C}}\)-convex domains and plane domains. Int. J. Math. 28(5), 1750031 (2017)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Nikolov, N., Trybula, M.: Estimates for the squeezing function near strictly pseudoconvex boundary points with applications (e-preprint). arXiv:1808.07892
  44. 44.
    Nikolov, N., Verma, K.: On the squeezing function and Fridman invariants (e-preprint). arXiv:181010739
  45. 45.
    Ning, J., Zhang, H., Zhou, X.: On p-Bergman kernel for bounded domains in \({\mathbb{C}}^n\). Commun. Anal. Geom. 24(4), 887–900 (2016)zbMATHGoogle Scholar
  46. 46.
    Păun, M., Takayama, S.: Positivity of twisted relative pluricanonical bundles and their direct images. J. Algebr. Geom. 27(2), 211–272 (2018)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rudin, W.: \(L^{p}\)-isometries and equimeasurability. Indiana Univ. Math. J. 25(3), 215–228 (1976)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Takayama, S.: Singularities of Narasimhan-Simha type metrics on direct images of relative pluricanonical bundles. Ann. Inst. Fourier (Grenoble) 66(2), 753–783 (2016)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Wold, E.F.: Asymptotics of invariant metrics in the normal direction and a new characterisation of the unit disk. Math. Z. 288(3–4), 875–887 (2018)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Yau, S.-T.: On the pseudonorm project of birational classification of algebraic varieties. In: Geometry and Analysis on Manifolds. Progress in Mathematics, vol. 308, pp. 327–339. Birkhäuser/Springer, Cham (2015)Google Scholar
  51. 51.
    Yeung, S.-K.: Quasi-isometry of metrics on Teichmuller spaces. Int. Math. Res. Not. 2005, 239–255 (2005)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Yeung, S.-K.: Geometry of domains with the uniform squeezing property. Adv. Math. 221(2), 547–569 (2009)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Zhang, L.: Intrinsic derivative, curvature estimates and squeezingfunction. Sci. China Math. 60(6), 1149–1162 (2017)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Zhou, X., Zhu, L.: An optimal \(L^2\) extension theorem on weakly pseudoconvex Kähler manifolds. J. Differ. Geom. 110(1), 135–186 (2018)zbMATHGoogle Scholar
  55. 55.
    Zhou, X., Zhu, L.: Siu’s lemma, optimal \(L^2\) extension, and applications to pluricanonical sheaves. Math. Ann.  https://doi.org/10.1007/s00208-018-1783-8 (2018)
  56. 56.
    Zimmer, A.: A gap theorem for the complex geometry of convex domains. Trans. Am. Math. Soc. 370(10), 7489–7509 (2018)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Zimmer, A.: Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents. Math. Ann.  https://doi.org/10.1007/s00208-018-1715-7 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.School of Mathematical SciencesCapital Normal UniversityBeijingPeople’s Republic of China
  4. 4.Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of MathematicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations