The Dual Blaschke Addition

  • Lujun GuoEmail author
  • Huahua Jia


It is remarkable that there is a duality in geometric tomography between results on projections of convex bodies and results on sections of star (rather than convex) bodies. The radial Blaschke addition, which is the dual version of Blaschke addition, as an operation between central symmetric star bodies is introduced in this paper. The relationship between it and the classical radial addition, many properties of radial Blaschke addition and related inequalities are established.


Star body Blaschke addition Radial addition k-Intersection body Dual Brunn–Minkowski inequality 

Mathematical Subject Classification

52A20 52A40 39B22 



The authors are very grateful to the referee who read the manuscript carefully and provided a lot of valuable suggestions and comments.


  1. 1.
    Blaschke, W.: Kreis und Kugel, 2nd edn. W. de Gruyter, Berlin (1956)CrossRefzbMATHGoogle Scholar
  2. 2.
    Böröczky, K.J., Schneider, R.: Stable determination of convex bodies from sections. Studia Sci. Math. Hung. 46, 367–376 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fenchel, W., Jessen, B.: Mengenfunktionen und konvexe Körper. Danske Vid. Selsk. Math.-Fys. Medd 16(3), 31 (1938)zbMATHGoogle Scholar
  4. 4.
    Gardner, R.: Geometric Tomography. Encyclopedia of Mathematics and its Applications, vol. 58, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  5. 5.
    Gardner, R.J., Hug, D., Weil, W.: Operations between sets in geometry. J. Eur. Math. Soc. 15, 2297–2352 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gardner, R.J., Parapatits, L., Schuster, F.E.: A characterization of Blaschke addition. Adv. Math. 254, 396–418 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, New York (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, L., Leng, G.: Determination of star bodies from p-centroid bodies. Proc. Indian Acad. Sci. Math. Sci. 123, 577–586 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, L., Leng, G.: Stable determination of convex bodies from centroid bodies. Houston J. Math. 40, 395–406 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, L., Leng, G., Lin, Y.: A stability result for \(p\)-centroid bodies. Bull. Korean Math. Soc. 55, 139–148 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Koldobsky, A.: Fourier Analysis in Convex Geometry, Math. Surveys Monogr. Amer. Math. Soc., Providence (2005)CrossRefGoogle Scholar
  12. 12.
    Minkowski, H.: Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, 198–219, (1897). Gesammelte Abhandlungen, vol. II, pp. 103–121. Teubner, Leipzig, (1911)Google Scholar
  13. 13.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 151, expanded edn. Cambridge University Press, Cambridge (2014)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, College of Mathematics and Information ScienceHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations