The Hermite–Hadamard Inequality in Higher Dimensions

• Stefan Steinerberger
Article

Abstract

The Hermite–Hadamard inequality states that the average value of a convex function on an interval is bounded from above by the average value of the function at the endpoints of the interval. We provide a generalization to higher dimensions: let $$\Omega \subset {\mathbb {R}}^n$$ be a convex domain and let $$f:\Omega \rightarrow {\mathbb {R}}$$ be a convex function satisfying $$f \big |_{\partial \Omega } \ge 0$$, then
\begin{aligned} \frac{1}{|\Omega |} \int _{\Omega }{f ~\text {d} {\mathcal {H}}^n} \le \frac{2 \pi ^{-1/2} n^{n+1}}{|\partial \Omega |} \int _{\partial \Omega }{f~\text {d} {\mathcal {H}}^{n-1}}. \end{aligned}
The constant $$2 \pi ^{-1/2} n^{n+1}$$ is presumably far from optimal; however, it cannot be replaced by 1 in general. We prove slightly stronger estimates for the constant in two dimensions where we show that $$9/8 \le c_2 \le 8$$. We also show, for some universal constant $$c>0$$, if $$\Omega \subset {\mathbb {R}}^2$$ is simply connected with smooth boundary, $$f:\Omega \rightarrow {\mathbb {R}}_{}$$ is subharmonic, i.e., $$\Delta f \ge 0$$, and $$f \big |_{\partial \Omega } \ge 0$$, then
\begin{aligned} \int _{\Omega }{f~ \text {d} {\mathcal {H}}^2} \le c \cdot \text{ inradius }(\Omega ) \int _{\partial \Omega }{ f ~\text {d}{\mathcal {H}}^{1}}. \end{aligned}
We also prove that every domain $$\Omega \subset {\mathbb {R}}^n$$ whose boundary is ’flat’ at a certain scale $$\delta$$ admits a Hermite–Hadamard inequality for all subharmonic functions with a constant depending only on the dimension, the measure $$|\Omega |$$, and the scale $$\delta$$.

Keywords

Hermite–Hadamard inequality Subharmonic functions Brownian motion

Mathematics Subject Classification

26B25 28A75 31A05 31B05 35B50

References

1. 1.
Banuelos, R.: Four unknown constants: 2009 Oberwolfach workshop on Low Eigenvalues of Laplace and Schrodinger Operators. Oberwolfach Reports No. 06 (2009)Google Scholar
2. 2.
Banuelos, R., Carroll, T.: Brownian motion and the fundamental frequency of a drum. Duke Math. J. 75(3), 575–602 (1994)
3. 3.
Banuelos, R., Carroll, T.: The maximal expected lifetime of Brownian motion. Math. Proc. R. Ir. Acad. 111A(1), 1–11 (2011)
4. 4.
Barani, A.: Hermite–Hadamard and Ostrowski type inequalities on hemispheres. Mediterr. J. Math. 13(6), 4253–4263 (2016)
5. 5.
Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)
6. 6.
Bessenyei, M.: The Hermite–Hadamard inequality on simplices. Am. Math. Mon. 115(4), 339–345 (2008)
7. 7.
Carroll, T., Ortega-Cerda, J.: The univalent Bloch–Landau constant, harmonic symmetry and conformal glueing. J. Math. Pures Appl. (9) 92(4), 396–406 (2009)
8. 8.
Chen, Y.: Hadamard’s inequality on a triangle and on a polygon. Tamkang J. Math. 35(3), 247–254 (2004)
9. 9.
Connelly, R., Ostro, S.: Ellipsoids and lightcurves. Geom. Dedicata 17(1), 87–98 (1984)
10. 10.
de la Cal, J., Cárcamo, J.: Multidimensional Hermite–Hadamard inequalities and the convex order. J. Math. Anal. Appl. 324(1), 248–261 (2006)
11. 11.
de la Cal, J., Cárcamo, J., Escauriaza, L.: A general multidimensional Hermite–Hadamard type inequality. J. Math. Anal. Appl. 356(2), 659–663 (2009)
12. 12.
Dragomir, S.S.: On Hadamards inequality on a disk. J. Inequal. Pure Appl. Math. 1, Article 2 (2000)Google Scholar
13. 13.
Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)
14. 14.
Dragomir, S., Pearce, C.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University (2000)Google Scholar
15. 15.
Fejer, L.: Über die Fourierreihen, II. Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24, 369–390 (1906)Google Scholar
16. 16.
Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)
17. 17.
Hermite, C.: Sur deux limites dune integrale define. Mathesis 3, 82 (1883)Google Scholar
18. 18.
Makar-Limanov, L.G.: The solution of the Dirichlet problem for the equation in a convex region. Mat. Zametki 9, 89–92 (1971) (in Russian); English translation in Math. Notes 9, 52–53 (1971)Google Scholar
19. 19.
Mercer, A.: Hadamard’s inequality for a triangle, a regular polygon and a circle. Math. Inequal. Appl. 5(2), 219–223 (2002)
20. 20.
Mihailescu, M., Niculescu, C.: An extension of the Hermite–Hadamard inequality through subharmonic functions. Glasg. Math. J. 49(3), 509–514 (2007)
21. 21.
Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Hoboken (2002)
22. 22.
Niculescu, C.: The Hermite–Hadamard inequality for convex functions of a vector variable. Math. Inequal. Appl. 5(4), 619–623 (2002)
23. 23.
Niculescu, C., Persson, L.-E.: Old and New on the Hermite–Hadamard inequality. Real Anal. Exch. 29, 663–686 (2003–2004)Google Scholar
24. 24.
Nowicka, M., Witkowski, A.: A refinement of the right-hand side of the Hermite–Hadamard inequality for simplices. Aequat. Math. 91, 121–128 (2017)
25. 25.
Pasteczka, P.: Jensen-type geometric shapes. arXiv:1804.03688 Google Scholar
26. 26.
Payne, L.E., Philippin, G.A.: Some remarks on the problems of elastic torsion and of torsional creep. In: Some Aspects of Mechanics of Continua, Part I, pp. 32–40. Jadavpur University, Calcutta (1977)Google Scholar
27. 27.
Payne, L.E., Philippin, G.A.: Isoperimetric inequalities in the torsion and clamped membrane problems for convex plane domains. SIAM J. Math. Anal. 14(6), 1154–1162 (1983)
28. 28.
Rachh, M., Steinerberger, S.: On the location of maxima of the Schrödinger equation. Commun. Pure Appl. Math. 71, 1109–1122 (2018)
29. 29.
Rivin, I.: Surface area and other measures of ellipsoids. Adv. Appl. Math. 39(4), 409–427 (2007)
30. 30.
Shaked, M., Shanthikumar, J.: Stochastic Orders. Springer, New York (2006)
31. 31.
Steinerberger, S.: Topological bounds for Fourier coefficients and applications to torsion. J. Funct. Anal. 274, 1611–1630 (2018)
32. 32.
Steinerberger, S.: An endpoint Alexandrov–Bakelman–Pucci estimate in the plane. Can. Math. Bull. (2018, to appear)Google Scholar
33. 33.
Villani, C.: Optimal Transport. Old and New. Springer, Berlin (2008)
34. 34.
Wasowicz, S., Witkowski, A.: On some inequality of Hermite–Hadamard type. Opusc. Math. 32(3), 591–600 (2012)