The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 413–427 | Cite as

Complete Minimal Submanifolds with Nullity in the Hyperbolic Space

  • Marcos Dajczer
  • Theodoros Kasioumis
  • Andreas Savas-HalilajEmail author
  • Theodoros Vlachos


We investigate complete minimal submanifolds \(f: M^3\rightarrow \mathbb {H}^n\) in hyperbolic space with index of relative nullity at least one at any point. The case when the ambient space is either the Euclidean space or the round sphere was already studied in Dajczer et al. (Math Z 287: 481–491, 2017 and Comment Math Helv, to appear, 2017), respectively. If the scalar curvature is bounded from below we conclude that the submanifold has to be either totally geodesic or a generalized cone over a complete minimal surface lying in an equidistant submanifold of \(\mathbb {H}^n\).


Minimal submanifolds Index of relative nullity Real-analytic set Omori–Yau maximum principle 

Mathematics Subject Classification

53C42 53C40 


  1. 1.
    Alias, L., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham (2016)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc 145, 1–49 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carberry, E., Turner, K.: Harmonic tori in De Sitter spaces \(\mathbb{S}_1^{2n}\). Geom. Dedic. 170, 143–155 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dajczer, M., Gromoll, D.: Rigidity of complete Euclidean hypersurfaces. J. Differ. Geom. 31, 401–416 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dajczer, M., et al.: Submanifolds and Isometric Immersions. Math. Lecture Ser., vol. 13. Publish or Perish Inc., Houston (1990)zbMATHGoogle Scholar
  6. 6.
    Dajczer, M., Kasioumis, Th, Savas-Halilaj, A., Vlachos, Th: Complete minimal submanifolds with nullity in Euclidean space. Math. Z. 287, 481–491 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dajczer, M., Kasioumis, Th., Savas-Halilaj, A., Vlachos, Th.: Complete minimal submanifolds with nullity in Euclidean spheres. Comment. Math. Helv., to appear (2018)Google Scholar
  8. 8.
    Eells, J., Sampson, J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ejiri, N.: Isotropic harmonic maps of Riemannian surfaces into De Sitter space time. Q. J. Math. 39, 291–306 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hasanis, Th, Savas-Halilaj, A., Vlachos, Th: Complete minimal hypersurfaces in the hyperbolic space \(\mathbb{H}^4\) with vanishing Gauss-Kronecker curvature. Trans. Am. Math. Soc. 359, 2799–2818 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hulett, E.: Superconformal harmonic surfaces in De Sitter space–times. J. Geom. Phys. 55, 179–206 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kasioumis, Th.: Ruled minimal submanifolds with rank at most four in the hyperbolic space. In preparation (2018)Google Scholar
  13. 13.
    Krantz, S., Parks, H.: A Primer of Real Analytic Functions. Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser Boston Inc., Boston (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Meier, M.: Removable singularities of harmonic maps and an application to minimal submanifolds. Indiana Univ. Math. J. 35, 705–726 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Taylor, M.: Partial Differential Equations I. Basic theory. Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wood, C.M.: The energy of a unit vector field. Geom. Dedic. 64, 319–330 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  • Marcos Dajczer
    • 1
  • Theodoros Kasioumis
    • 2
  • Andreas Savas-Halilaj
    • 2
    Email author
  • Theodoros Vlachos
    • 2
  1. 1.IMPARio de JaneiroBrazil
  2. 2.Department of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations