The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 134–141 | Cite as

On the Renormalized Volume of Tubes Over Polarized Kähler–Einstein Manifolds

  • Yuya TakeuchiEmail author


A formula of the renormalized volume of tubes over polarized Kähler–Einstein manifolds is given in terms of the Einstein constant and the volume of the polarization.


Strictly pseudoconvex domain Renormalized volume Q-prime curvature Kähler–Einstein metric 

Mathematics Subject Classification

32T15 (primary) 32V05 (secondary) 



The author is grateful to his supervisor Professor Kengo Hirachi for various helpful comments. He also thank Professor Paul Yang for introducing him to this work. A part of this work was carried out during his visit to Princeton University with the support from The University of Tokyo/Princeton University Strategic Partnership Teaching and Research Collaboration Grant, and from the Program for Leading Graduate Schools, MEXT, Japan. This work was also supported by JSPS Research Fellowship for Young Scientists and KAKENHI Grant Number 16J04653.


  1. 1.
    Case, J.S., Gover, A.R.: The \(P^{\prime }\)-operator, the \(Q^{\prime }\)-curvature, and the CR tractor calculus. arXiv:1709.08057
  2. 2.
    Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507–544 (1980)CrossRefzbMATHGoogle Scholar
  3. 3.
    Fefferman, C., Graham, C.R.: \(Q\)-curvature and Poincaré metrics. Math. Res. Lett. 9(2–3), 139–151 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Graham, C.R.: Volume and area renormalizations for conformally compact Einstein metrics. In: The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), No. 63, pp. 31–42 (2000)Google Scholar
  5. 5.
    Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152(1), 89–118 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Grauert, H., Remmert, R.: Plurisubharmonische Funktionen in komplexen Räumen. Math. Z. 65, 175–194 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Henningson, M., Skenderis,K.: The holographic Weyl anomaly. J. High Energy Phys. (7) (1998). Paper 23Google Scholar
  8. 8.
    Hirachi, K.: \(Q\)-prime curvature on CR manifolds. Differ. Geom. Appl. 33, 213–245 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hirachi, K., Marugame, T., Matsumoto, Y.: Variation of total Q-prime curvature on CR manifolds. Adv. Math. 306, 1333–1376 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schneider, M.: Über eine Vermutung von Hartshorne. Math. Ann. 201, 221–229 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Seshadri, N.: Volume renormalization for complete Einstein-Kähler metrics. Differ. Geom. Appl. 25(4), 356–379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Takeuchi, Y.: Ambient constructions for Sasakian \(\eta \)-Einstein manifolds. Adv. Math. (to appear). arXiv:1706.03164
  13. 13.
    van Coevering, C.: Kähler–Einstein metrics on strictly pseudoconvex domains. Ann. Global Anal. Geom. 42(3), 287–315 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yang, P., Chang, S.-Y .A., Qing, J.: On the renormalized volumes for conformally compact einstein manifolds. J. Math. Sci. (N.Y.) 149(6), 1755–1769 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations