Advertisement

Atomic and Littlewood–Paley Characterizations of Anisotropic Mixed-Norm Hardy Spaces and Their Applications

  • Long Huang
  • Jun Liu
  • Dachun Yang
  • Wen Yuan
Article
  • 19 Downloads

Abstract

Let \(\vec {a}:=(a_1,\ldots ,a_n)\in [1,\infty )^n\), \(\vec {p}:=(p_1,\ldots ,p_n)\in (0,\infty )^n\) and \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) be the anisotropic mixed-norm Hardy space associated with \(\vec {a}\) defined via the non-tangential grand maximal function. In this article, via first establishing a Calderón–Zygmund decomposition and a discrete Calderón reproducing formula, the authors then characterize \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), respectively, by means of atoms, the Lusin area function, the Littlewood–Paley g-function or \(g_{\lambda }^*\)-function. The obtained Littlewood–Paley g-function characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) coincidentally confirms a conjecture proposed by Hart et al. (Trans Am Math Soc,  https://doi.org/10.1090/tran/7312, 2017). Applying the aforementioned Calderón–Zygmund decomposition as well as the atomic characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), the authors establish a finite atomic characterization of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\), which further induces a criterion on the boundedness of sublinear operators from \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of anisotropic Calderón–Zygmund operators from \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) to itself [or to the mixed-norm Lebesgue space \(L^{\vec {p}}(\mathbb {R}^n)\)]. The obtained atomic characterizations of \(H_{\vec {a}}^{\vec {p}}(\mathbb {R}^n)\) and boundedness of anisotropic Calderón–Zygmund operators on these Hardy-type spaces positively answer two questions mentioned by Cleanthous et al. (J Geom Anal 27:2758–2787, 2017). All these results are new even for the isotropic mixed-norm Hardy spaces on \(\mathbb {R}^n\).

Keywords

Anisotropic (mixed-norm) Hardy space Calderón–Zygmund decomposition Discrete Calderón reproducing formula Atom Littlewood–Paley function Calderón–Zygmund operator 

Mathematics Subject Classification

Primary 42B35 Secondary 42B30 42B25 42B20 30L99 

Notes

Acknowledgements

The authors would like to thank the referees for their careful reading and useful comments, which indeed improved the presentation of this article.

References

  1. 1.
    Álvarez, J., Milman, M.: \(H^p\) continuity properties of Calderón-Zygmund-type operators. J. Math. Anal. Appl. 118, 63–79 (1986)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bagby, R.J.: An extended inequality for the maximal function. Proc. Am. Math. Soc. 48, 419–422 (1975)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Besov, O.V., Il’in, V.P., Lizorkin, P.I.: The \(L_p\)-estimates of a certain class of non-isotropically singular integrals (Russian). Dokl. Akad. Nauk SSSR 169, 1250–1253 (1966)MathSciNetGoogle Scholar
  5. 5.
    Blozinski, A.P.: Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Am. Math. Soc. 263, 149–167 (1981)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borup, L., Nielsen, M.: On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6, 107–154 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), vi+122 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–571 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bownik, M.: Anisotropic Triebel-Lizorkin spaces with doubling measures. J. Geom. Anal. 17, 387–424 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57, 3065–3100 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math. Nachr. 283, 392–442 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Calderón, A.-P.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)CrossRefMATHGoogle Scholar
  14. 14.
    Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Calderón, A.-P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Calderón, A.-P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chen, T., Sun, W.: Iterated and mixed weak norms with applications to geometric inequalities. arXiv:1712.01064
  18. 18.
    Christ, M.: A \(T(b)\) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61, 601–628 (1990)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, 167–184, Contemporary Mathematics, 693. American Mathematical Society, Providence (2017)Google Scholar
  20. 20.
    Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl. Comput. Harmon. Anal. (2017).  https://doi.org/10.1016/j.acha.2017.10.001
  22. 22.
    Ding, Y., Sato, S.: Littlewood-Paley functions on homogeneous groups. Forum Math. 28, 43–55 (2016)MathSciNetMATHGoogle Scholar
  23. 23.
    Fabes, E.B., Rivière, N.M.: Singular integrals with mixed homogeneity. Stud. Math. 27, 19–38 (1966)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Farkas, W.: Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 2000, 83–113 (2009)MathSciNetMATHGoogle Scholar
  25. 25.
    Farkas, W., Johnsen, J., Sickel, W.: Traces of anisotropic Besov-Lizorkin-Triebel spaces—a complete treatment of the borderline cases. Math. Bohem. 125, 1–37 (2000)MathSciNetMATHGoogle Scholar
  26. 26.
    Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci. China Math. 60, 2093–2154 (2017)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Fernández, D.L.: Vector-valued singular integral operators on \(L^p\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)CrossRefMATHGoogle Scholar
  29. 29.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)MATHGoogle Scholar
  30. 30.
    Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Besov and Triebel-Lizorkin spaces. Math. Nachr. 289, 2019–2036 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel-Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)Google Scholar
  33. 33.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York (2014)MATHGoogle Scholar
  34. 34.
    Grafakos, L., Liu, L., Yang, D.: Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci. China Ser. A 51, 2253–2284 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Guliyev, V.S., Mustafayev, R.Ch.: Boundedness of the anisotropic maximal and anisotropic singular integral operators in generalized Morrey spaces. Acta Math. Sin. (Engl. Ser.) 27, 2361–2370 (2011)Google Scholar
  36. 36.
    Han, Y., Müller, D., Yang, D.: Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr. 279, 1505–1537 (2006)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr. Appl. Anal. (2008). Art. ID 893409Google Scholar
  38. 38.
    Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in Lebesgue and mixed Lebesgue spaces. Trans. Am. Math. Soc. (2017).  https://doi.org/10.1090/tran/7312
  39. 39.
    Ho, K.-P.: Strong maximal operator on mixed-norm spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 62, 275–291 (2016)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Johnsen, J., Munch Hansen, S., Sickel, W.: Characterisation by local means of anisotropic Lizorkin-Triebel spaces with mixed norms. Z. Anal. Anwend. 32, 257–277 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Johnsen, J., Munch Hansen, S., Sickel, W.: Anisotropic, mixed-norm Lizorkin-Triebel spaces and diffeomorphic maps. J. Funct. Spaces (2014). Art. ID 964794Google Scholar
  43. 43.
    Johnsen, J., Munch Hansen, S., Sickel, W.: Anisotropic Lizorkin-Triebel spaces with mixed norms—traces on smooth boundaries. Math. Nachr. 288, 1327–1359 (2015)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5, 183–198 (2007)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Johnsen, J., Sickel, W.: On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 281, 669–696 (2008)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Ky, L.D.: New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integr. Equ. Oper. Theory 78, 115–150 (2014)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Li, B., Bownik, M., Yang, D., Zhou, Y.: Anisotropic singular integrals in product spaces. Sci. China Math. 53, 3163–3178 (2010)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity 16, 213–244 (2012)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Li, B., Bownik, M., Yang, D.: Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J. Funct. Anal. 266, 2611–2661 (2014)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Li, B., Bownik, M., Yang, D., Yuan, W.: A mean characterization of weighted anisotropic Besov and Triebel-Lizorkin spaces. Z. Anal. Anwend. 33, 125–147 (2014)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Li, B., Fan, X., Yang, D.: Littlewood-Paley characterizations of anisotropic Hardy spaces of Musielak-Orlicz type. Taiwan. J. Math. 19, 279–314 (2015)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 59, 1669–1720 (2016)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Liu, J., Weisz, F., Yang, D., Yuan, W.: Variable anisotropic Hardy spaces and their applications. Taiwan. J. Math. (2017).  https://doi.org/10.11650/tjm/171101
  55. 55.
    Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456, 356–393 (2017)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Liu, J., Weisz, F., Yang, D., Yuan, W.: Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. J. Fourier Anal. Appl. (2018).  https://doi.org/10.1007/s00041-018-9609-3
  57. 57.
    Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces. Acta Math. Sci. Ser. B Engl. Ed. 38, 1–33 (2018)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of weighted anisotropic Triebel-Lizorkin spaces via averages on balls (Submitted)Google Scholar
  59. 59.
    Lizorkin, P.I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv. Akad. Nauk SSSR Ser. Mat. 34, 218–247 (1970)MathSciNetGoogle Scholar
  60. 60.
    Lu, S.-Z.: Four Lectures on Real \(H^p\) Spaces. World Scientific Publishing Co. Inc., River Edge (1995)CrossRefGoogle Scholar
  61. 61.
    Luxemburg, W.A.J.: On the measurability of a function which occurs in a paper by A. C. Zaanen. Nederl. Akad. Wetensch. Proc. Ser. A. 61 = Indag. Math. 20, 259–265 (1958)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Meda, S., Sjögren, P., Vallarino, M.: On the \(H^1\)-\(L^1\) boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)CrossRefMATHGoogle Scholar
  63. 63.
    Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Nogayama, T.: Mixed Morrey spaces. arXiv:1806.09293
  65. 65.
    Sato, S.: Estimates for singular integrals on homogeneous groups. J. Math. Anal. Appl. 400, 311–330 (2013)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Sato, S.: Characterization of parabolic Hardy spaces by Littlewood-Paley functions. Results Math. 73(73), 106 (2018)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Sato, S.: Weak type estimates for functions of Marcinkiewicz type with fractional integrals of mixed homogeneity. Math. Scand. (to appear). arXiv:1708.07343
  68. 68.
    Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operator. Integr. Equ. Oper. Theory 77, 123–148 (2013)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Diss. Math. (Rozprawy Mat.) 525, 1–102 (2017)MathSciNetMATHGoogle Scholar
  70. 70.
    Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)MATHGoogle Scholar
  71. 71.
    Stefanov, A., Torres, R.H.: Calderón-Zygmund operators on mixed Lebesgue spaces and applications to null forms. J. London Math. Soc. (2) 70, 447–462 (2004)Google Scholar
  72. 72.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Monographs in Harmonic Analysis III, vol. 43. Princeton University Press, Princeton (1993)MATHGoogle Scholar
  73. 73.
    Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84, 1239–1295 (1978)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables I. The theory of \(H^p\)-spaces. Acta Math. 103, 25–62 (1960)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton (1971)MATHGoogle Scholar
  76. 76.
    Torres, R.H.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), viii+172 (1991)MathSciNetMATHGoogle Scholar
  77. 77.
    Triebel, H.: Theory of Function Spaces. III. Birkhäuser Verlag, Basel (2006)MATHGoogle Scholar
  78. 78.
    Triebel, H.: Tempered Homogeneous Function Spaces. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2015)CrossRefMATHGoogle Scholar
  79. 79.
    Ullrich, T.: Continuous characterization of Besov-Lizorkin-Triebel space and new interpretations as coorbits. J. Funct. Space Appl. (2012). Art. ID 163213Google Scholar
  80. 80.
    Yamazaki, M.: A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 131–174 (1986)MathSciNetMATHGoogle Scholar
  81. 81.
    Yamazaki, M.: A quasi-homogeneous version of paradifferential operators. II. A symbol calculus. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 311–345 (1986)MathSciNetMATHGoogle Scholar
  82. 82.
    Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and thier applications. J. Funct. Anal. 271, 2822–2887 (2016)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Springer, Cham (2017)MATHGoogle Scholar
  84. 84.
    Yang, D., Zhou, Y.: Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl. 339, 622–635 (2008)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Yang, D., Zhou, Y.: A boundedness criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Yang, D., Zhou, Y.: New properties of Besov and Triebel-Lizorkin spaces on RD-spaces. Manuscr. Math. 134, 59–90 (2011)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Yang, D., Yang, D., Hu, G.: The Hardy Space \(H^1\) with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, vol. 2084. Springer, Cham (2013)CrossRefMATHGoogle Scholar
  88. 88.
    Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Diss. Math. (Rozprawy Mat.) 520, 1–74 (2016)MathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations