Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1608–1648 | Cite as

John–Nirenberg Inequalities and Weight Invariant BMO Spaces

  • Jarod Hart
  • Rodolfo H. TorresEmail author
Article
  • 79 Downloads

Abstract

This work explores new deep connections between John–Nirenberg type inequalities and Muckenhoupt weight invariance for a large class of BMO-type spaces. The results are formulated in a very general framework in which BMO spaces are constructed using a base of sets, used also to define weights with respect to a non-negative measure (not necessarily doubling), and an appropriate oscillation functional. This includes as particular cases many different function spaces on geometric settings of interest. As a consequence, the weight invariance of several BMO and Triebel–Lizorkin spaces considered in the literature is proved. Most of the invariance results obtained under this unifying approach are new even in the most classical settings.

Keywords

Spaces of bounded mean oscillations John–Nirenberg inequality Muckenhoupt weights Weight invariance BMO 

Notes

Acknowledgements

We would like to thank the anonymous referee for a thorough reading of our original manuscript and for the very valuable observations which have helped clarify and improve our presentation.

References

  1. 1.
    Bernicot, F., Martell, J.M.: Self-improving properties for abstract Poincaré type inequalities. Trans. Am. Math. Soc. 367(7), 4793–4835 (2015)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bernicot, F., Zhao, J.: Abstract framework for John Nirenberg inequalities and applications to Hardy spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(3), 475–501 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bloom, S.: A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 292(1), 103–122 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bui, H.-Q., Duong, X.-T.: Weighted BMO spaces associated to operators, preprint. arXiv:1201.5828v3 [math.FA] (2013)
  5. 5.
    Bui, H.-Q., Taibleson, M.: The characterization of the Triebel-Lizorkin spaces for \(p=\infty \). J. Fourier Anal. Appl. 6(5), 537–550 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Duong, X.T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18(4), 943–973 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duong, X.T., Yan, L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58(10), 1375–1420 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Franchi, B., Pérez, C., Wheeden, R.: Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 153(5), 108–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    García-Cuerva, J.: Weighted \(H^p\) spaces. Diss. Math. (Rozprawy Mat.) 162, 63 (1979)zbMATHGoogle Scholar
  12. 12.
    García-Cuerva, J., Rubio de Francia, J.-L.: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, Notas de Matemática, 104. North-Holland Publishing Co., Amsterdam (1985)Google Scholar
  13. 13.
    Harboure, E., Salinas, O., Viviani, B.: A look at \(BMO_\varphi (\omega )\) through Carleson measures. J. Fourier Anal. Appl. 13(3), 267–284 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hartzstein, S., Salinas, O.: Weighted BMO and Carleson measures on spaces of homogeneous type. J. Math. Anal. Appl. 342(2), 950–969 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hart, J., Oliveira, L.: Hardy space estimates for limited ranges of Muckenhoupt weights. Adv. Math. 313, 803–838 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ho, K.-P.: Characterizations of \(BMO\) by \(A_p\) weights and \(p\)-convexity. Hiroshima Math. J. 41(2), 153–165 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holmes, I., Lacey, M.T., Wick, W.D.: Commutators in the two-weight setting. Math. Ann. 367(1–2), 51–80 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous types. J. Funct. Anal. 263(12), 3883–3899 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jiménez-del-Toro, A.: Exponential self-improvement of generalized Poincaré inequalities associated with approximations of the identity and semigroups. Trans. Am. Math. Soc. 364(2), 637–660 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jiménez-del-Toro, A., Martell, J.M.: Self-improvement of Poincaré type inequalities associated with approximations of the identity and semigroups. Potential Anal. 38(3), 805–841 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Journé, J.-L.: Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983)Google Scholar
  25. 25.
    Lo, Y., Ruilin, L.: \(BMO\) functions in spaces of homogeneous type. Sci. Sin. Ser. A 27(7), 695–708 (1984)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Logunov, A.A., Slavin, L., Stolyarov, D.M., Vasyunin, V., Zatitskiy, P.B.: Weak integral conditions for BMO. Proc. Am. Math. Soc. 143(7), 2913–2926 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Luque, T., Pérez, C., Rela, E.: Reverse Hölder property for strong weights and general measures. J. Geom. Anal. 27(1), 162–182 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures. Duke Math. J. 102(3), 533–565 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Muckenhoupt, B., Wheeden, R.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/76)Google Scholar
  30. 30.
    Neri, U.: Fractional integration on the space \(H^1\) and its dual. Studia Math. 53(2), 175–189 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Orobitg, J., Pérez, C.: \(A_p\) weights for nondoubling measures in \({\mathbb{R}}^n\) and applications. Trans. Am. Math. Soc. 354(5), 2013–2033 (2002)CrossRefzbMATHGoogle Scholar
  32. 32.
    Shi, X.L., Torchinsky, A.: Local sharp maximal functions in spaces of homogeneous type. Sci. Sin. Ser. A 30(5), 473–480 (1987)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Strichartz, R.: Bounded mean oscillation and Sobolev spaces. Indiana Univ. Math. J. 29(4), 539–558 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Strichartz, R.: Traces of BMO-Sobolev spaces. Proc. Am. Math. Soc. 83(3), 509–513 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math, J. 28(3), 511–544 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Trong, N., Tung, N.: Weighted \(BMO\) type spaces associated to admissible functions and applications. Acta Math. Vietnam 41(2), 209–241 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tsutsui, Y.: \(A_\infty \) constants between \(BMO\) and weighted \(BMO\). Proc. Jpn. Acad. Ser. A Math. Sci. 90(1), 11–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Higuchi Biosciences CenterUniversity of KansasLawrenceUSA
  2. 2.Department of MathematicsUniversity of KansasLawrenceUSA

Personalised recommendations