Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1583–1607 | Cite as

On the Steinness Index

  • Jihun YumEmail author
Article
  • 77 Downloads

Abstract

We introduce the concept of Steinness index related to the Stein neighborhood basis. We then show several results: (1) The existence of Steinness index is equivalent to that of strong Stein neighborhood basis. (2) On the Diederich–Fornæss worm domains in particular, we present an explicit formula relating the Steinness index to the well-known Diederich–Fornæss index. (3) The Steinness index is 1 if a smoothly bounded pseudoconvex domain admits finitely many boundary points of infinite type.

Keywords

Steinness index Diederich–Fornæss index Stein neighborhood basis Strong Stein neighborhood basis Worm domains 

Mathematics Subject Classification

32T20 32T35 

Notes

Acknowledgements

The author would like to express his deep gratitude to Professor Kang-Tae Kim for valuable guidance and encouragements, and to Professor N. Shcherbina for fruitful conversations.

References

  1. 1.
    Bedford, E., Fornæss, J.E.: Domains with pseudoconvex neighborhood systems. Invent. Math. 47(1), 1–27 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Catlin, D.: Global regularity of \(\overline{\partial }\)-Neumann problem. Proc. Symp. Pure Math. 41, 39–49 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39(2), 129–141 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains: an example with nontrivial neighborhood. Math. Ann. 225(3), 275–292 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Diederich, K., Fornæss, J.E.: Pseudoconvex domains: existence of Stein neighborhoods. Duke Math. J. 44(3), 641–662 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fornæss, J.E., Herbig, A.K.: A note on plurisubharmonic defining functions in \(\mathbb{C}^2\). Math. Z. 257(4), 769–781 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fornæss, J.E., Herbig, A.K.: A note on plurisubharmonic defining functions in \(\mathbb{C}^n\). Math. Ann. 342(4), 749–772 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harrington, P.S.: The Diederich-Fornæss index and good vector fields, arXiv:1705.05815v3, (2018)
  9. 9.
    Krantz, S.G., Liu, B., Peloso, M.: Geometric Analysis on the Diederich-Fornæss Index, arXiv:1606.02343, (2016)
  10. 10.
    Liu, B.: The Diederich-Fornæss index 1 : for domains of non-trivial index, arXiv:1701.00293v4, (2017)
  11. 11.
    Sahutoğlu, S.: Strong Stein neighbourhood bases. Complex Var. Elliptic Equ. 57(10), 1073–1085 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sibony, N.: Une classe de domaines pseudoconvexes. Duke Math. J. 55, 299–319 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sibony, N.: Some aspects of weakly pseudoconvex domains. In: Proceedings of Symposium Pure Mathematics, vol. 52, Part 1. American Mathematical Society, Providence, RI (1991)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations