The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1456–1478 | Cite as

Constant Angle Surfaces in Lorentzian Berger Spheres

  • Irene I. OnnisEmail author
  • Apoena Passos Passamani
  • Paola Piu


In this work, we study helix spacelike and timelike surfaces in the Lorentzian Berger sphere \({\mathbb S}_{\varepsilon }^3\), that is the three-dimensional sphere endowed with a 1-parameter family of Lorentzian metrics, obtained by deforming the round metric on \({\mathbb S}^3\) along the fibers of the Hopf fibration \({\mathbb S}^3\rightarrow {\mathbb S}^2({1}/{2})\) by \(-\varepsilon ^2\). Our main result provides a characterization of the helix surfaces in \({\mathbb S}_{\varepsilon }^3\) using the symmetries of the ambient space and a general helix in \({\mathbb S}_{\varepsilon }^3\), with axis the infinitesimal generator of the Hopf fibers. Also, we construct some explicit examples of helix surfaces in \({\mathbb S}_{\varepsilon }^3\).


Helix surfaces Constant angle surfaces Lorentzian Berger sphere 

Mathematics Subject Classification

53B25 53B30 53C40 



The first author was supported by Grant 2016/24707-4, São Paulo Research Foundation (Fapesp). The third author was supported by PRIN 2015 “Varietà reali e complesse: geometria, topologia e analisi armonica” Italy; and GNSAGA-INdAM, Italy.


  1. 1.
    Cermelli, P., Di Scala, A.J.: Constant-angle surfaces in liquid crystals. Phil. Mag. 87, 1871–1888 (2007)CrossRefGoogle Scholar
  2. 2.
    Daniel, B.: Isometric immersions into \(3\)-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dillen, F., Fastenakels, J., Van der Veken, J., Vrancken, L.: Constant angle surfaces in \(\mathbb{S}^2\times \mathbb{R}\). Monatsh. Math. 152, 89–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dillen, F., Munteanu, M.I.: Constant angle surfaces in \({\mathbb{H}}^{2}\times {\mathbb{R}}\). Bull. Braz. Math. Soc. (N.S.) 40, 85–97 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dillen, F., Munteanu, M.I., Van der Veken, J., Vrancken, L.: Classification of constant angle surfaces in a warped product. Balkan J. Geom. Appl. 16(2), 35–47 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Di Scala, A., Ruiz-Hernández, G.: Helix submanifolds of Euclidean spaces. Monatsh. Math. 157, 205–215 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Di Scala, A., Ruiz-Hernández, G.: Higher codimensional Euclidean helix submanifolds. Kodai Math. J. 33, 192–210 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fastenakels, J., Munteanu, M.I., Van Der Veken, J.: Constant angle surfaces in the Heisenberg group. Acta Math. Sin. (Engl. Ser.) 27, 747–756 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yu, F., Nistor, A.I.: Constant angle property and canonical principal directions for surfaces in \(M^2(c) \times \mathbb{R}\_1\). Mediterr. J. Math. 10, 1035–1049 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    López, R., Munteanu, M.I.: On the geometry of constant angle surfaces in \(Sol_3\). Kyushu J. Math. 65, 237–249 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    López, R., Munteanu, M.I.: Constant angle surfaces in Minkowski space. Bull. Belg. Math. Soc. Simon Stevin 18(2), 271–286 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Montaldo, S., Onnis, I.I.: Helix surfaces in the Berger sphere. Isr. J. Math. 201, 949–966 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Montaldo, S., Onnis, I.I., Passamani, A.P.: Helix surfaces in the special linear group. Ann. Mat. Pura Appl. 195, 59–77 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Onnis, I.I., Piu, P.: Costant angle surfaces in the Lorentzian Heisenberg group. Archiv der Mathematik 109, 575–589 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ruiz-Hernández, G.: Minimal helix surfaces in \(N^n\times \mathbb{R}\). Abh. Math. Semin. Univ. Hambg. 81, 55–67 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaICMC, USPSão CarlosBrazil
  2. 2.Departamento de MatemáticaUFESVitóriaBrazil
  3. 3.Dipartimento di Matematica e InformaticaUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations