Advertisement

Improvement on 2-Chains Inside Thin Subsets of Euclidean Spaces

  • Bochen LiuEmail author
Article
  • 14 Downloads

Abstract

Given \(E\subset \mathbb {R}^d\), \(d\ge 2\), we prove that when \(\dim _{{\mathcal {H}}}(E)>\frac{d}{2}+\frac{1}{3}\), the set of gaps of 2-chains inside E, i.e.,
$$\begin{aligned} \Delta _2(E)=\{(|x-y|, |y-z|): x, y, z\in E \}\subset \mathbb {R}^2 \end{aligned}$$
has positive Lebesgue measure. This improves a result of Bennett, Iosevich, and Taylor. We also consider when the set of similarity classes of 2-chains,
$$\begin{aligned} S_2(E)=\left\{ \frac{t_1}{t_2}:(t_1,t_2)\in \Delta _2(E)\right\} =\left\{ \frac{|x-y|}{|y-z|}: x, y, z\in E \right\} \subset \mathbb {R} \end{aligned}$$
has positive Lebesgue measure. The main idea in this paper is to reduce geometric problems to integrals where Wolff-Erdoğan’s spherical averaging estimates apply. Invariant measures on orthogonal groups play an important role in the reduction.

Keywords

Distance problem Spherical averages Falconer distance conjecture Spherical averages Group action reduction Chains 

Mathematics Subject Classification

28A75 42B20 

Notes

Acknowledgements

This work was done when the author was visiting the Hong Kong University of Science and Technology. The author would like to thank Yang Wang for the financial support.

References

  1. 1.
    Bennett, M., Iosevich, A., Taylor, K.: Finite chains inside thin subsets of \({\mathbb{R}}^d\). Anal. PDE 9(3), 597–614 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Du, X., Zhang, R.: Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions. arXiv:1805.02775 (2018)
  3. 3.
    Du, X.D., Guth, L., Ou, Y., Wang, H., Wilson, B., Zhang, R.: Weighted restriction estimates and application to falconer distance set problem. Am. J. Math. arXiv:1802.10186 (2018)
  4. 4.
    Elekes, G., Sharir, M.: Incidences in three dimensions and distinct distances in the plane. Comb. Probab. Comput. 20(4), 571–608 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Erdoğan, M.B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eswarathasan, S., Iosevich, A., Taylor, K.: Fourier integral operators, fractal sets, and the regular value theorem. Adv. Math. 228(4), 2385–2402 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32(2), 206–212 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften. Band 153. Springer, New York (1969)Google Scholar
  9. 9.
    Grafakos, L., Greenleaf, A., Iosevich, A., Palsson, E.: Multilinear generalized Radon transforms and point configurations. Forum Math. 27(4), 2323–2360 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Greenleaf, A., Iosevich, A.: On triangles determined by subsets of the Euclidean plane, the associated bilinear operators and applications to discrete geometry. Anal. PDE 5(2), 397–409 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Greenleaf, A., Iosevich, A., Liu, B., Palsson, E.: A group-theoretic viewpoint on Erdős–Falconer problems and the Mattila integral. Rev. Mat. Iberoam. 31(3), 799–810 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Greenleaf, A., Iosevich, A., Liu, B., Palsson, E.: An elementary approach to simplexes in thin subsets of Euclidean space. arXiv:1608.04777 (2016)
  13. 13.
    Guth, L., Katz, N.H.: On the Erdős distinct distances problem in the plane. Ann. Math. 181(1), 155–190 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Iosevich, A., Liu, B.: Pinned distance problem, slicing measures and local smoothing estimates. Trans. AMS. arXiv:1706.09851 (2017)
  15. 15.
    Iosevich, A., Mourgoglou, M., Palsson, E.A.: On angles determined by fractal subsets of the Euclidean space. Math. Res. Lett. 23(6), 1737–1759 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Iosevich, A., Taylor, K., Uriarte-Tuero, I.: Pinned geometric configurations in Euclidean space and Riemannian manifolds. arXiv:1610.00349v1 (2016)
  17. 17.
    Liu, B.: Group actions, the Mattila integral and applications. arXiv:1705.00560 (2017)
  18. 18.
    Liu, B.: An \(L^2\)-identity and pinned distance problem. to appear in GAFA. arXiv:1802.00350 (2018)
  19. 19.
    Mattila, P.: Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets. Mathematika 34(2), 207–228 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mattila, P.: Fourier Analysis and Hausdorff Dimension, vol. 150. Cambridge University Press, Cambridge (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102(2), 193–251 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wolff, T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wolff, T.H.: Lectures on harmonic analysis, volume 29 of University Lecture Series. American Mathematical Society, Providence, RI. With a foreword by Charles Fefferman and preface by Izabella Łaba, Edited by Łaba and Carol Shubin (2003)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations