Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 577–615 | Cite as

Cartan Theorems for Stein Manifolds Over a Discrete Valuation Base

  • Jari TaskinenEmail author
  • Kari Vilonen
Article
  • 32 Downloads

Abstract

Let X be a complex manifold, let A be a topological discrete valuation ring, and write Open image in new window for the sheaf of functions on X with values in A. We prove Cartan theorems A and B for coherent Open image in new window -modules, when X is a Stein manifold and A satisfies some requirements like being a nuclear direct limit of Banach algebras. The result is motivated by questions in the work of the second author with Kashiwara in the proof of the codimension-three conjecture for holonomic microdifferential systems.

Keywords

Cartan theorem A and B Stein manifold Coherent module Codimension-three conjecture Discrete valuation ring Banach algebra Inductive limit 

Mathematics Subject Classification

Primary 32C35 Secondary 32W05 46A13 46H99 

References

  1. 1.
    Bungart, L.: Holomorphic functions with values in locally convex spaces and applications to integral formulas. Trans. Am. Math. Soc. 111, 317–344 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Frisch, J., Guenot, J.: Prolongement de faisceaux analytiques cohérents. Invent. Math. 7, 321–343 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Grauert, H., Remmert, R.: Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften 265, p. xviii+249. Springer, Berlin (1984)Google Scholar
  4. 4.
    Grothendieck, A.: Sur certains espaces de fonctions holomorphes. I. (French). J. Reine Angew. Math. 192, 35–64 (1953)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North-Holland Mathematical Library 7, p. xii\(+\)254. North-Holland, Amsterdam (1990)Google Scholar
  6. 6.
    Kashiwara, M., Vilonen, K.: Microdifferential systems and the codimension-three conjecture. Ann. Math. 180, 573–620 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Köthe, G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften, 237, p. xii+331. Springer, New York (1979)Google Scholar
  8. 8.
    Krantz, S.: Function Theory of Several Complex Variables, 2nd edn. AMS Chelsea Publishing, Providence (2001)zbMATHGoogle Scholar
  9. 9.
    Pietsch, A.: Nuclear locally Convex Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 66. Springer, New York (1972)Google Scholar
  10. 10.
    Schapira, P.: Microdifferential Systems in the Complex Domain, Grundlehren der Mathematischen Wissenschaften, vol. 269. Springer, Berlin (1985)CrossRefGoogle Scholar
  11. 11.
    Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble 6, 1–42 (1955–1956)Google Scholar
  12. 12.
    Siu, Y.-T.: Extending coherent analytic sheaves. Ann. Math. 90, 108–143 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Trautmann, G.: Ein KontinuitŠtssatz für die Fortsetzung kohärenter analytischer Garben. Arch. Math. (Basel) 18, 188–196 (1967)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  2. 2.School of Mathematics and StatisticsUniversity of MelbourneMelbourneAustralia

Personalised recommendations