The Journal of Geometric Analysis

, Volume 28, Issue 4, pp 3928–3949 | Cite as

Evolution of Area-Decreasing Maps Between Two-Dimensional Euclidean Spaces

  • Felix Lubbe


We consider the mean curvature flow of the graph of a smooth map \(f:{\mathbb {R}}^2\rightarrow {\mathbb {R}}^2\) between two-dimensional Euclidean spaces. If f satisfies an area-decreasing property, the solution exists for all times and the evolving submanifold stays the graph of an area-decreasing map \(f_t\). Further, we prove uniform decay estimates for the mean curvature vector of the graph and all higher-order derivatives of the corresponding map \(f_t\).


Mean curvature flow Area-decreasing maps Euclidean space 

Mathematics Subject Classification

Primary 53C44 53C42 53A07 



The author would like to thank Andreas Savas-Halilaj for stimulating discussions.


  1. 1.
    Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)Google Scholar
  2. 2.
    Chau, A., Chen, J., He, W.: Lagrangian mean curvature flow for entire Lipschitz graphs. Calc. Var. Partial Differ. Equ. 44(1–2), 199–220 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chau, A., Chen, J., Yuan, Y.: Lagrangian mean curvature flow for entire Lipschitz graphs II. Math. Ann. 357(1), 165–183 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, B.-L., Yin, L.: Uniqueness and pseudolocality theorems of the mean curvature flow. Commun. Anal. Geom. 15(3), 435–490 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, J.Y., Li, J.Y., Tian, G.: Two-dimensional graphs moving by mean curvature flow. Acta Math. Sin. (Engl. Ser.) 18(2), 209–224 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. (2) 130(3), 453–471 (1989). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105(3), 547–569 (1991). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Il’in, A.M.: On the behavior of the solution of the Cauchy problem for a parabolic equation under unrestricted growth of time. Uspehi Mat. Nauk. 16(2 (98)), 115–121 (1961)Google Scholar
  9. 9.
    Lee, K.-W., Lee, Y.-I.: Mean curvature flow of the graphs of maps between compact manifolds. Trans. Am. Math. Soc. 363(11), 5745–5759 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lubbe, F.: Mean curvature flow of contractions between Euclidean spaces. Calc. Var. Partial Differ. Equ. 55(4), 1–28 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Savas-Halilaj, A., Smoczyk, K.: Mean curvature flow of area decreasing maps between Riemann surfaces. arXiv:1602.07595
  12. 12.
    Savas-Halilaj, A., Smoczyk, K.: Bernstein theorems for length and area decreasing minimal maps. Calc. Var. Partial Differ. Equ. 50(3–4), 549–577 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Savas-Halilaj, A., Smoczyk, K.: Homotopy of area decreasing maps by mean curvature flow. Adv. Math. 255, 455–473 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Savas-Halilaj, A., Smoczyk, K.: Evolution of contractions by mean curvature flow. Math. Ann. 361(3–4), 725–740 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schoen, R.M.: The Role of Harmonic Mappings in Rigidity and Deformation Problems. In: Complex Geometry (Osaka, 1990). Lecture Notes in Pure and Applied Mathematics, vol. 143. Dekker, New York, 179–200 (1993)Google Scholar
  16. 16.
    Smoczyk, K.: Longtime existence of the Lagrangian mean curvature flow. Calc. Var. Partial Differ. Equ. 20(1), 25–46 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Smoczyk, K.: Mean curvature flow in higher codimension: introduction and survey. In: Global Differential Geometry, pp. 231–274. Springer, Berlin (2012).
  18. 18.
    Smoczyk, K., Tsui, M.-P., Wang, M.-T.: Curvature decay estimates of graphical mean curvature flow in higher codimensions. Trans. Am. Math. Soc. 368(11), 7763–7775 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tsui, M.-P., Wang, M.-T.: Mean curvature flows and isotopy of maps between spheres. Commun. Pure Appl. Math. 57(8), 1110–1126 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, M.-T.: Deforming area preserving diffeomorphism of surfaces by mean curvature flow. Math. Res. Lett. 8(5–6), 651–661 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, M.-T.: Mean curvature flow of surfaces in Einstein four-manifolds. J. Differ. Geom. 57(2), 301–338 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148(3), 525–543 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, M.-T.: On graphic Bernstein type results in higher codimension. Trans. Am. Math. Soc. 355(1), 265–271 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, M.-T.: Gauss maps of the mean curvature flow. Math. Res. Lett. 10(2–3), 287–299 (2003). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, M.-T.: Subsets of Grassmannians preserved by mean curvature flows. Commun. Anal. Geom. 13(5), 981–998 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations