Advertisement

The Journal of Geometric Analysis

, Volume 28, Issue 4, pp 3892–3905 | Cite as

Biharmonic Conformal Maps in Dimension Four and Equations of Yamabe-Type

  • Paul BairdEmail author
  • Ye-Lin Ou
Article
  • 118 Downloads

Abstract

We prove that the problem of constructing biharmonic conformal maps on a 4-dimensional Einstein manifold reduces to a Yamabe-type equation. This allows us to construct an infinite family of examples on the Euclidean 4-sphere. In addition, we characterize all solutions on Euclidean 4-space and show that there exists at least one proper biharmonic conformal map from any closed Einstein 4-manifold of negative Ricci curvature.

Keywords

Biharmonic map Conformal biharmonic map Einstein 4-manifold Yamabe equation Möbius transformation 

Mathematics Subject Classification

58E20 53A30 

References

  1. 1.
    Aubin, T.: Problemes isoperimetriques et espaces de Sobolov. J. Differ. Geom. 11, 573–598 (1976)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aubin, T.: Equations différentielles non linéaires et Problèmes de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics. Ann. Glob. Anal. Geom. 23(1), 65–75 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds. The London Mathematical Society Monographs (N.S.) No. 29, Oxford University Press, Oxford (2003)Google Scholar
  6. 6.
    Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps. Ann. Glob. Anal. Geom. 34, 403–414 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baird, P., Fardoun, A., Ouakkas, S.: Biharmonic maps from biconformal deformations with respect to isoparametric functions. Differ. Geom. Appl. 50, 155–166 (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Balmus, A., Montaldo, S., Oniciuc, C.: Classification results for biharmonic submanifolds in spheres. Preprint (2007). arXiv:math/0701155
  9. 9.
    Bliss, G.: An integral inequality. J. Lond. Math. Soc. 5, 44–46 (1930)Google Scholar
  10. 10.
    Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of \(S^3\). Int. J. Math. 12(8), 867–876 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Isr. J. Math. 130, 109–123 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semi-liner equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–289 (1989)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chang, S.-Y.A.: Conformal Invariants and Partial Differential Equations. Princeton University Press, Princeton (2004)Google Scholar
  14. 14.
    Chen, B.-Y., Nagano, T.: Harmonic metrics, harmonic tensors, and Gauss maps. J. Math. Soc. Jpn. 36(2), 295–313 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, W., Wei, J., Yan, S.: Infinitely many solutions for the Shrödinger equations in \(\mathbb{R}^N\) with critical growth. J. Differ. Equ. 252(3), 2425–2447 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gu, C.H.: Conformally flat spaces and solutions to Yang–Mills equations. Phys. Rev. D (3) 21(4), 970–971 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Habermann, L.: Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures. Lecture Notes in Mathematics, vol. 1743. Springer, Berlin (2000)Google Scholar
  18. 18.
    Hebey, E.: Compactness and Stability for Nonlinear Elliptic Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jiang, G.Y.: \(2\)-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7, 389–402 (1986)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Jiang, G.Y.: Some non-existence theorems of \(2\)-harmonic isometric immersions into Euclidean spaces. Chin. Ann. Math. Ser. 8A, 376–383 (1987)Google Scholar
  21. 21.
    LeBrun, C.: Four-dimensional Einstein mandifolds, and beyond. In: LeBrun, C., Wang, M. (eds.) Surveys in Differential Geometry, vol. VI: Essays on Einstein Manifolds, pp. 247–285. International Press of Boston, Boston (1999)Google Scholar
  22. 22.
    Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. (2) 140, 655–683 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Loubeau, E., Ou, Y.-L.: Biharmonic maps and morphisms from conformal mappings. Tohoku Math J. 62(1), 55–73 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Montaldo, S., Oniciuc, C., Ratto, A.: Rotationally symmetric biharmonic maps between models. J. Math. Anal. Appl. 431, 494–508 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ou, Y.-L.: On conformal biharmonic immersions. Anal. Glob. Anal. Geom. 36, 133–142 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ou, Y.-L.: Biharmonic conformal immersions into 3-dimensional manifolds. Mediterr. J. Math. 12(2), 541–554 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ouakkas, S.: Géométrie conforme associé à quelques opérateurs d’ordre 4. Thesis Université de Brest (2008)Google Scholar
  28. 28.
    Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps. Differ. Geom. Appl. 26(5), 495–502 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vétois, J., Wang, S.: Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four. Advances in Nonlinear Analysis (2017), ISSN (Online) 2191-950X, ISSN (Print) 2191-9496.  https://doi.org/10.1515/anona-2017-0085

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de Bretagne Atlantique UMR 6205Université de Bretagne OccidentaleBrest Cedex 3France
  2. 2.Department of MathematicsTexas A & M University-CommerceCommerceUSA

Personalised recommendations