Advertisement

The Journal of Geometric Analysis

, Volume 28, Issue 4, pp 3477–3490 | Cite as

Conformal CR Positive Mass Theorem

  • Pak Tung Ho
Article
  • 89 Downloads

Abstract

In this paper, we prove the following version of conformal CR positive mass theorem: Suppose that \((N, J,\theta )\) and \((N, J,\hat{\theta }=e^{2f}\theta )\) are three-dimensional asymptotically flat pseudohermitian manifolds such that their Tanaka-Webster curvatures satisfy \(e^{2f}\hat{R}-R\ge 0.\) Then the p-mass of \((N, J, \theta )\) and \((N, J, \hat{\theta })\) satisfy \( m(J, \hat{\theta })-m(J, \theta )\ge 0, \) and equality holds if and only if \(\hat{\theta }=\theta \). We also prove that the p-mass is independent of the choice of the sequence of coordinates spheres.

Keywords

Positive mass theorem CR manifold Conformal 

Mathematics Subject Classification

Primary 32V20 Secondary 35R01 53A30 53C17 

Notes

Acknowledgements

The author would like to thank Prof. Paul Yang for the discussions, guidance, and encouragements which lead to this work. The author is grateful to Princeton University for the kind hospitality, and he was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST) (No.201731033.01).

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brendle, S.: Convergence of the Yamabe flow for arbitrary initial energy. J. Differ. Geom. 69, 217–278 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brendle, S.: Convergence of the Yamabe flow in dimension 6 and higher. Invent. Math. 170, 541–576 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, J.H., Chiu, H.L., Yang, P.: Uniformization of spherical CR manifolds. Adv. Math. 255, 182–216 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, J.H., Malchiodi, A., Yang, P.: A positive mass theorem in three dimensional Cauchy-Riemann geometry. Adv. Math. 308, 276–347 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gamara, N.: The CR Yamabe conjecture-the case \(n=1\). J. Eur. Math. Soc. 3, 105–137 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gamara, N., Yacoub, R.: CR Yamabe conjecture—the conformally flat case. Pac. J. Math. 201, 121–175 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jerison, D., Lee, J.M.: Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differ. Geom. 29, 303–343 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–197 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schoen, R., Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. Topics in calculus of variations (Montecatini Terme, 120154. Lecture Notes in Math, vol. 1365, p. 1989. Springer, Berlin (1987)Google Scholar
  16. 16.
    Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schoen, R., Yau, S.T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schoen, R., Yau, S.T.: Positive scalar curvature and minimal hypersurface singularities. preprint. arXiv:1704.05490
  19. 19.
    Schwetlick, H., Struwe, M.: Convergence of the Yamabe flow for“large” energies. J. Reine Angew. Math. 562, 59–100 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Simon, W.: Conformal positive mass theorems. Lett. Math. Phys. 50, 275–281 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tam, L.F., Wang, Q.: Some conformal positive mass theorems. Differ. Geom. Appl. 53, 103–113 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, Q.: Conformal positive mass theorems for asymptotically flat manifolds with inner boundary. Differ. Geom. Appl. 33, 105–116 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2017

Authors and Affiliations

  1. 1.Department of MathematicsSogang UniversitySeoulKorea

Personalised recommendations