The Journal of Geometric Analysis

, Volume 28, Issue 2, pp 1853–1868 | Cite as

Irreducible Ginzburg–Landau Fields in Dimension 2

  • Ákos Nagy


Ginzburg–Landau fields are the solutions of the Ginzburg–Landau equations which depend on two positive parameters, \(\alpha \) and \(\beta \). We give conditions on \(\alpha \) and \(\beta \) for the existence of irreducible solutions of these equations. Our results hold for arbitrary compact, oriented, Riemannian 2-manifolds (for example, bounded domains in \(\mathbb {R}^2\), spheres, tori, etc.) with de Gennes–Neumann boundary conditions. We also prove that, for each such manifold and all positive \(\alpha \) and \(\beta \), the Ginzburg–Landau free energy is a Palais–Smale function on the space of gauge equivalence classes; Ginzburg–Landau fields exist for only a finite set of energy values, and the moduli space of Ginzburg–Landau fields is compact.


Ginzburg–Landau equations Gauge theory Moduli spaces 

Mathematics Subject Classification

70S15 35Q56 58J32 



I wish to thank my advisor, Tom Parker, for his advice during the preparation of this paper. I greatly benefited from the discussions with Paul Feehan and Manos Maridakis about the Łojasiewicz–Simon inequality. I am also grateful for the help of Benoit Charbonneau.


  1. 1.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser Boston, Inc., Boston (1994)zbMATHGoogle Scholar
  2. 2.
    Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135(1), 1–17 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chouchkov, D., Ercolani, N.M., Rayan, S., Sigal, I.M.: Ginzburg–Landau equations on Riemann surfaces of higher genus. Eur. J. Math. 3(1), 1–21 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    de Gennes, P.-D.: Superconductivity of Metals and Alloys. Advanced Book Classics. Perseus, Cambridge (1999)Google Scholar
  5. 5.
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (1998). Réimpr. avec corrections: 1999, 2002Google Scholar
  7. 7.
    Feehan, P.M.N., Maridakis,M.: Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functionals on Banach spaces and applications to harmonic maps. arXiv:1510.03817 (2015)
  8. 8.
    Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Progress in Physics. Birkhäuser, Boston (1980)zbMATHGoogle Scholar
  9. 9.
    Sigal, I.M.: Magnetic vortices, Abrikosov lattices and automorphic functions. arXiv:1308.5440 (2013)
  10. 10.
    Sigal, I.M., Tzaneteas, T.: Stability of Abrikosov lattices under gauge-periodic perturbations. Nonlinearity 25(4), 1187 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Taubes, C.H.: On the equivalence of the first and second order equations for gauge theories. Commun. Math. Phys. 75(3), 207–227 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Uhlenbeck, K.K.: Connections with \(L^p\) bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wehrheim, K.: Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2004)CrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2017

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations