Skip to main content
Log in

Riesz Transform for \(1\le p \le 2\) Without Gaussian Heat Kernel Bound

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the \(L^p\) boundedness of the Riesz transform as well as the reverse inequality on Riemannian manifolds and graphs under the volume doubling property and a sub-Gaussian heat kernel upper bound. We prove that the Riesz transform is then bounded on \(L^p\) for \(1<p<2\), which shows that Gaussian estimates of the heat kernel are not a necessary condition for this. In the particular case of Vicsek manifolds and graphs, we show that the reverse inequality does not hold for \(1<p<2\). This yields a full picture of the ranges of \(p\in (1,+\infty )\) for which respectively the Riesz transform is \(L^p\)-bounded and the reverse inequality holds on \(L^p\) on such manifolds and graphs. This picture is strikingly different from the Euclidean one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Auscher, P.: On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \({\mathbb{R}}^n\) and related estimates. Mem. Am. Math. Soc. 186(871), 1–82 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Auscher, P., Coulhon, T.: Riesz transform on manifolds and Poincaré inequalities. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 4(3), 531–555 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Barlow, M.: Which values of the volume growth and escape time exponent are possible for a graph? Rev. Mat. Iberoam. 20(1), 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barlow, M., Bass, R.: Stability of parabolic Harnack inequalities. Trans. Am. Math. Soc. 356(4), 1501–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow, M., Bass, R., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Jpn. 58(2), 485–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barlow, M., Coulhon, T., Grigor’yan, A.: Manifolds and graphs with slow heat kernel decay. Invent. Math. 144(3), 609–649 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, M., Coulhon, T., Kumagai, T.: Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Commun. Pure Appl. Math. 58(12), 1642–1677 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blunck, S., Kunstmann, P.C.: Calderón–Zygmund theory for non-integral operators and the \(H^\infty \) functional calculus. Rev. Mat. Iberoam. 19(3), 919–942 (2003)

    Article  MATH  Google Scholar 

  9. Chen, L.: Sub-Gaussian heat kernel estimates and quasi Riesz transforms for \(1\le p\le 2\). Publ. Mat. 59, 313–338 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, L.: Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimates, Ph.D. thesis, Université Paris Sud-Paris XI; Australian National University (2014). https://tel.archives-ouvertes.fr/tel-01001868

  11. Coifman, R., Weiss, G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  12. Coulhon, T.: Inégalités de Gagliardo-Nirenberg pour les semi-groupes d’opérateurs et applications. Potential Anal. 1(4), 343–353 (1992)

    Article  MathSciNet  Google Scholar 

  13. Coulhon, T.: Off-diagonal heat kernel lower bounds without Poincaré. J. Lond. Math. Soc. 68(3), 795–816 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coulhon, T., Duong, X.T.: Riesz transforms for \(1\le p\le 2\). Trans. Am. Math. Soc. 351(3), 1151–1169 (1999)

    Article  MATH  Google Scholar 

  15. Coulhon, T., Duong, X.T.: Riesz transform and related inequalities on noncompact Riemannian manifolds. Commun. Pure Appl. Math. 56(12), 1728–1751 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coulhon, T., Duong, X.T., Li, X.-D.: Littlewood–Paley–Stein functions on complete Riemannian manifolds for \(1\le p\le 2\). Stud. Math. 154(1), 37–57 (2003)

    Article  MATH  Google Scholar 

  17. Coulhon, T., Saloff-Coste, L.: Puissances d’un opérateur régularisant. Ann. Inst. Henri Poincaré Probab. Stat. 26(3), 419–436 (1990)

    MATH  Google Scholar 

  18. Coulhon, T., Saloff-Coste, L.: Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoam. 9(2), 293–314 (1993)

    Article  Google Scholar 

  19. Coulhon, T., Saloff-Coste, L.: Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoam. 11(3), 687–726 (1995)

    Article  Google Scholar 

  20. Dungey, N.: A Littlewood–Paley–Stein estimate on graphs and groups. Stud. Math. 189(2), 113–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duong, X.T., McIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam. 15(2), 233–263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duong, X.T., Robinson, D.: Semigroup kernels, Poisson bounds, and holomorphic functional calculus. J. Funct. Anal. 142, 89–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feneuil, J.: Littlewood–Paley functionals on graphs. Math. Nachr. 288(11–12), 1254–1285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feneuil, J.: Riesz transform on graphs under subgaussian estimates. arXiv:1505.07001

  25. Feneuil, J.: On diagonal lower bound of Markov kernel from \(L^2\) analyticity. arXiv:1508.02447

  26. Grigor’yan, A.: Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold. J. Funct. Anal. 127, 363–389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence (2009)

    Google Scholar 

  28. Grigor’yan, A., Hu, J.: Upper bounds of heat kernels on doubling spaces. Mosc. Math. J. 14, 505–563 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Grigor’yan, A., Telcs, A.: Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324, 521–556 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hebisch, W., Saloff-Coste, L.: On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier 51(5), 1437–1481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Post, O.: Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, vol. 2012. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  32. Russ, E.: Riesz transforms on graphs for \(1\le p\le 2\). Math. Scand. 87(1), 133–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sjögren, P.: An estimate for a first-order Riesz operator on the affine group. Trans. Am. Math. Soc. 351(8), 3301–3314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sjögren, P., Vallarino, M.: Boundedness from \(H^1\) to \(L^1\) of Riesz transforms on a Lie group of exponential growth. Ann. Inst. Fourier 58(8), 1117–1151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  36. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63. Princeton University Press, Princeton (1970)

    Google Scholar 

  37. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Russ.

Additional information

The Li Chen has been supported in part by ICMAT Severo Ochoa project SEV-2011-0087 and she acknowledges that the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Agreement No. 615112 HAPDEGMT. Li Chen, Joseph Feneuil and Emmanuel Russ are supported by the French ANR project HAB (no. ANR-12-BS01-0013).

Appendix: Estimates for the Heat Kernel in Fractal Manifolds

Appendix: Estimates for the Heat Kernel in Fractal Manifolds

Let \((\Gamma ,\mu )\) be a graph as in Sect. 4. For all \(A\subset \Gamma \), let \(\partial A\) denote the exterior boundary of A, defined as \(\left\{ x\in \Gamma {\setminus } A; \text{ there } \text{ exists } y\sim x \text{ with } y\in A\right\} \), and let \(\overline{A}:=A\cup \partial A\).

A function \(h:\overline{A}\rightarrow \mathbb {R} \) is said to be harmonic in A if and only if, for all \(x\in A, \Delta h(x)=0\).

Say that \((\Gamma ,\mu )\) satisfies a Harnack elliptic inequality if and only if, for all \(x\in \Gamma \), all \(R\ge 1\) and all nonnegative harmonic functions u in B(x, 2R),

Let \(D>0\). Say that \(\Gamma \) satisfies \((V_{D})\) if and only if, for all \(x\in \Gamma \) and all \(r>0\),

Denote by \((X_n)_{n\ge 1}\) a random walk on \(\Gamma \), that is a Markov chain with transition probability given by p. For all \(A\subset \Gamma \), define

$$\begin{aligned} T_A:=\min \left\{ n\ge 1;\ X_n\in A\right\} \end{aligned}$$

and, for all \(x\in \Gamma \) and all \(r>0\), let

$$\begin{aligned} \tau _{x,r}:=T_{B^c(x,r)}. \end{aligned}$$

If \(m>0\), say that \(\Gamma \) satisfies (\(E_{m}\)) if and only if, for all \(x\in \Gamma \) and all \(r>0\),

Theorem 2 in [3] claims that, for all \(m\in [2,D+1]\), there exists a graph \(\Gamma \) satisfying (\(V_{D}\)) (hence the doubling volume property), (EHI) and (\(E_{m}\)). Therefore, Theorem 2.15 in [5] (see also [29, Theorem 3.1]) implies that \(\Gamma \) satisfies the following parabolic Harnack inequality: for all \(x_0\in \Gamma \), all \(R\ge 1\) and all non-negative functions \(u:\llbracket 0,4N\rrbracket \times \overline{B(x_0,2R)}\) solving \(u_{n+1}-u_n=\Delta u_n\) in \(\llbracket 0,4N-1\rrbracket \times B(x_0,2R)\), one has

$$\begin{aligned} \max _{n\in \llbracket N,2N-1\rrbracket ,\ y\in B(x,R)} u_n(y)\lesssim \min _{n\in \llbracket 3N,4N-1\rrbracket ,\ y\in B(x,R)} (u_n(y)+u_{n+1}(y)), \end{aligned}$$

where N is an integer satisfying \(N\sim R^{m}\) and \(N\ge 2R\).

Consider now the manifold M built from \(\Gamma \) with a self-similar structure at infinity by replacing the edges of the graph with tubes of length 1 and then gluing the tubes together smoothly at the vertices. Since M and \(\Gamma \) are roughly isometric, Theorem 2.21 in [5] yields that M satisfies the following parabolic Harnack inequality: for all \(x_0\in M\) and all \(R>0\), for all non-negative solutions u of \(\partial _tu=\Delta u\) in \((0,4R^{m})\times B(x_0,R)\), one has

$$\begin{aligned} \sup _{Q_-}u\lesssim \inf _{Q_+}u, \end{aligned}$$

where

$$\begin{aligned} Q_-=(R^{m},2R^{m})\times B(x_0,R) \end{aligned}$$

and

$$\begin{aligned} Q_+=(3R^{m},4R^{m})\times B(x_0,R). \end{aligned}$$

In turn the parabolic Harnack inequality implies (\({\textit{UE}}_m\)) (see [30, Theorem 5.3]). See also [31, Section 1.2.7].

Finally, let us explain why (\({\textit{UE}}_m\)) for \(m>2\) is incompatible with (\({\textit{UE}}\)). It is classical (see, for instance, [13, Section 3]) that (\({\textit{UE}}_m\)) together with (D) implies the on-diagonal lower bound

$$\begin{aligned} h_{t}(x,x) \gtrsim \frac{1}{V(x,t^{1/m})}, \quad t\ge 1, \end{aligned}$$

which is clearly incompatible with

$$\begin{aligned} h_{t}(x,x) \lesssim \frac{1}{V(x,t^{1/2})}, \quad t\ge 1 \end{aligned}$$

because of the so-called reverse volume doubling property (see, for instance, [28, Proposition 5.2]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Coulhon, T., Feneuil, J. et al. Riesz Transform for \(1\le p \le 2\) Without Gaussian Heat Kernel Bound. J Geom Anal 27, 1489–1514 (2017). https://doi.org/10.1007/s12220-016-9728-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9728-5

Keywords

Mathematics Subject Classification

Navigation