Advertisement

The Journal of Geometric Analysis

, Volume 26, Issue 1, pp 663–671 | Cite as

Classification of Compact Convex Ancient Solutions of the Planar Affine Normal Flow

  • Mohammad N. IvakiEmail author
Article

Abstract

We prove that the only compact convex ancient solutions of the planar affine normal flow are contracting ellipses.

Keywords

Affine normal flow Affine differential geometry Affine support function Ancient solutions 

Mathematics Subject Classification

Primary 53C44 53A04 52A10 Secondary 53A15 

References

  1. 1.
    Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207–230 (1996)zbMATHGoogle Scholar
  2. 2.
    Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pacific J. Math. 195(1), 1–34 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, S.: Classifying convex compact ancient solutions to the affine curve shortening flow. J. Geom. Anal. (2013). doi: 10.1007/s12220-013-9456-z
  4. 4.
    Petty, C.M.: Affine isoperimetric problems. Discrete geometry and convexity. Ann. N. Y. Acad. Sci. 440, 113–127 (1985). doi: 10.1111/j.1749-6632.1985.tb14545.x MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ivaki, M.N.: Centro-affine curvature flows on centrally symmetric convex curves, to appear in Trans. Amer. Math. Soc. arXiv:1205.6456v2
  6. 6.
    Loftin, J., Tsui, M.P.: Ancient solutions of the affine normal flow. J. Differ. Geom. 78, 113–162 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Lutwak, E.: The Brunn-Minkowski-Fiery theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119, 79–120 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Lu, J., Wang, X.J.: Rotationally symmetric solutions to the \(L_p\)-Minkowski problem. J. Differ. Equ. 254, 983–1005 (2013)zbMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2015

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienWienAustria

Personalised recommendations