Advertisement

The Journal of Geometric Analysis

, Volume 25, Issue 3, pp 1701–1719 | Cite as

On the Relationship between D’Angelo \(q\)-Type and Catlin \(q\)-Type

  • Vasile Brinzanescu
  • Andreea C. NicoaraEmail author
Article

Abstract

We establish inequalities relating two measurements of the order of contact of \(q\)-dimensional complex varieties with a real hypersurface.

Keywords

Orders of contact D’Angelo finite \(q\)-type Catlin finite \(q\)-type Finite type domains in \(\mathbb {C}^n\) Pseudoconvexity 

Mathematics Subject Classification

Primary 32F18 32T25 Secondary 32V35 13H15 

Notes

Acknowledgments

The authors wish to thank Catlin and D’Angelo for a number of essential discussions. Additionally, the authors are very grateful to the referee for his suggestions that greatly improved this paper. The first author was partially supported by a grant of the Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0156. He would like to thank the Department of Mathematics at the University of Pennsylvania for the hospitality during the preparation of part of this article.

References

  1. 1.
    Boas, H.P., Straube, E.J.: Global regularity of the \(\overline{\partial }\)-Neumann problem: a survey of the \(L^2\)-Sobolev theory. In: Several Complex Variables, (Berkeley, CA, 1995–1996), vol. 37, pp. 79–111. Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge (1999)Google Scholar
  2. 2.
    Catlin, D.: Necessary conditions for subellipticity of the \(\bar{\partial }\)-Neumann problem. Ann. of Math. (2) 117(1), 147–171 (1983)Google Scholar
  3. 3.
    Catlin, D.: Boundary invariants of pseudoconvex domains. Ann. Math. 120(3), 529–586 (1984)Google Scholar
  4. 4.
    Catlin, D.: Subelliptic estimates for the \(\overline{\partial }\)-Neumann problem on pseudoconvex domains. Ann. Math. 126(1), 131–191 (1987)Google Scholar
  5. 5.
    Catlin, D.W.: Global regularity of the \(\bar{\partial }\)-Neumann problem. In: Complex Analysis of Several Variables (Madison, Wis., 1982), vol. 41, pp. 39–49. Proc. Sympos. Pure Math., Amer. Math. Soc., Providence (1984)Google Scholar
  6. 6.
    Catlin, D.W., Cho, J.S.: Sharp estimates for the \(\overline{\partial }\)-Neumann problem on regular coordinate domains. Preprint. arXiv:0811.0830v1, [math.CV] 5 Nov 2008
  7. 7.
    Catlin, D.W., D’Angelo, J.P.: Subelliptic estimates. In: Complex Analysis, pp. 75–94. Trends Math., Springer, Birkhäuser (2010)Google Scholar
  8. 8.
    D’Angelo, J.P.: Finite type conditions for real hypersurfaces. J. Differ. Geom. 14(1):59–66 (1980)Google Scholar
  9. 9.
    D’Angelo, J.P.: Subelliptic estimates and failure of semicontinuity for orders of contact. Duke Math. J. 47(4), 955–957 (1980)Google Scholar
  10. 10.
    D’Angelo, J.P.: Real hypersurfaces, orders of contact, and applications. Ann. Math. 115(3), 615–637 (1982)Google Scholar
  11. 11.
    D’Angelo, J.P.: Finite-type conditions for real hypersurfaces in \({ C}^{n}\). In: Complex Analysis (University Park, Pa., 1986), Lecture Notes in Math. vol. 1268, pp. 83–102. Springer, Berlin (1987)Google Scholar
  12. 12.
    D’Angelo, J.P.: Several complex variables and the geometry of real hypersurfaces. In: Studies in Advanced Mathematics. CRC Press, Boca Raton, (1993)Google Scholar
  13. 13.
    D’Angelo, J.P., Kohn, J.J.: Subelliptic estimates and finite type. In: Several Complex Variables (Berkeley, CA, 1995–1996), vol. 37, pp. 199–232. Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge (1999)Google Scholar
  14. 14.
    Gunning, R.C.: Lectures on complex analytic varieties: The local parametrization theorem. Mathematical Notes. Princeton University Press, Princeton (1970)Google Scholar
  15. 15.
    Khanh, TV., Zampieri, G.: Precise subelliptic estimates for a class of special domains. Preprint. arXiv:0812.2560v2, [math.CV] 7 Jan 2009
  16. 16.
    Kohn, J.J.: Subellipticity of the \(\bar{\partial }\)-neumann problem on pseudo-convex domains: sufficient conditions. Acta Math. 142(1–2), 79–122 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Siu, Y.T.: Effective termination of Kohn’s algorithm for subelliptic multipliers. Pure Appl. Math. Q. 6(4):1169–1241 (2010)Google Scholar
  18. 18.
    Straube, E.J.: Lectures on the \(L^2\)-Sobolev theory of the \(\overline{\partial }\) -Neumann problem. In: European Mathematical Society (EMS), Zürich, ESI Lectures in Mathematics and Physics. (2010)Google Scholar
  19. 19.
    Tougeron, J.C.: Idéaux de fonctions différentiables. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71, Springer, Berlin (1972)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2014

Authors and Affiliations

  1. 1.Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit 3BucharestRomania
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations