The Journal of Geometric Analysis

, Volume 24, Issue 3, pp 1641–1672 | Cite as

Timelike Constant Mean Curvature Surfaces with Singularities

  • David Brander
  • Martin Svensson


We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces at the big cell boundary, generalize the definition of CMC surfaces to include those with finite, generic singularities, and show how to construct surfaces with prescribed singularities by solving a singular geometric Cauchy problem. The solution shows that the generic singularities of the generalized surfaces are cuspidal edges, swallowtails, and cuspidal cross caps.


Differential geometry Integrable systems Timelike CMC surfaces Singularities Constant mean curvature 

Mathematics Subject Classification (2010)

53A10 53C42 53A35 


  1. 1.
    Bobenko, A.I.: Surfaces in Terms of 2 by 2 Matrices. Old and New Integrable Cases. In: Harmonic Maps and Integrable Systems, Aspects Math., vol. E23, pp. 83–127. Vieweg, Wiesbaden (1994) CrossRefGoogle Scholar
  2. 2.
    Brander, D.: Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space. Math. Proc. Camb. Philos. Soc. 150, 527–556 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brander, D., Dorfmeister, J.: Generalized DPW method and an application to isometric immersions of space forms. Math. Z. 262, 143–172 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Brander, D., Rossman, W., Schmitt, N.: Holomorphic representation of constant mean curvature surfaces in Minkowski space: consequences of non-compactness in loop group methods. Adv. Math. 223, 949–986 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Brander, D., Svensson, M.: The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps. J. Differential Geom. (to appear) Google Scholar
  6. 6.
    Dorfmeister, J., Inoguchi, J., Toda, M.: Weierstrass-type representation of timelike surfaces with constant mean curvature. In: Contemp. Math., vol. 308, pp. 77–99. Am. Math. Soc., Providence (2002) Google Scholar
  7. 7.
    Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dorfmeister, J.F.: Generalized Weierstraß representations of surfaces. Adv. Stud. Pure Math., 55–111 (2008) Google Scholar
  9. 9.
    Fernandez, I., Lopez, F.J.: Periodic maximal surfaces in the Lorentz-Minkowski space L 3. Math. Z. 256, 573–601 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fernandez, I., Lopez, F.J., Souam, R.: The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space. Math. Ann. 332, 605–643 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fujimori, S., Saji, K., Umehara, M., Yamada, K.: Singularities of maximal surfaces. Math. Z. 259, 827–848 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ishikawa, G., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17, 269–293 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kim, Y.W., Koh, S.-E., Shin, H., Yang, S.-D.: Spacelike maximal surfaces, timelike minimal surfaces, and Björling representation formulae. J. Korean Math. Soc. 48, 1083–1100 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kim, Y.W., Yang, S.D.: Prescribing singularities of maximal surfaces via a singular Björling representation formula. J. Geom. Phys. 57, 2167–2177 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pac. J. Math. 221, 303–351 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Murata, S., Umehara, M.: Flat surfaces with singularities in Euclidean 3-space. J. Differ. Geom. 82, 279–316 (2009) zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford (1986) zbMATHGoogle Scholar
  18. 18.
    Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. (2) 169, 491–529 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Umeda, Y.: Constant-mean-curvature surfaces with singularities in Minkowski 3-space. Exp. Math. 18, 311–323 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Umehara, M., Yamada, K.: Maximal surfaces with singularities in Minkowski space. Hokkaido Math. J. 35, 13–40 (2006) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2013

Authors and Affiliations

  1. 1.Department of Mathematics, MatematiktorvetTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Mathematics & Computer Science and CP3-Origins, Centre of Excellence for Particle Physics PhenomenologyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations