Advertisement

Journal of Geometric Analysis

, Volume 24, Issue 1, pp 118–143 | Cite as

Elliptic Equations and Systems with Subcritical and Critical Exponential Growth Without the Ambrosetti–Rabinowitz Condition

  • Nguyen Lam
  • Guozhen LuEmail author
Article

Abstract

In this paper, we prove the existence of nontrivial nonnegative solutions to a class of elliptic equations and systems which do not satisfy the Ambrosetti–Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of subcritical or critical exponential growth at ∞. The known results without the AR condition in the literature only involve nonlinear terms of polynomial growth. We will use suitable versions of the Mountain Pass Theorem and Linking Theorem introduced by Cerami (Istit. Lombardo Accad. Sci. Lett. Rend. A, 112(2):332–336, 1978 Ann. Mat. Pura Appl., 124:161–179, 1980). The Moser–Trudinger inequality plays an important role in establishing our results. Our theorems extend the results of de Figueiredo, Miyagaki, and Ruf (Calc. Var. Partial Differ. Equ., 3(2):139–153, 1995) and of de Figueiredo, do Ó, and Ruf (Indiana Univ. Math. J., 53(4):1037–1054, 2004) to the case where the nonlinear term does not satisfy the AR condition. Examples of such nonlinear terms are given in Appendix A. Thus, we have established the existence of nontrivial nonnegative solutions for a wider class of nonlinear terms.

Keywords

Mountain pass theorem Critical point theory Ambrosetti–Rabinowitz condition Moser–Trudinger inequality Subcritical and critical exponential growth 

Mathematics Subject Classification

35B38 35J92 35B33 35J62 

References

  1. 1.
    Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17(3), 393–413 (1990) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adimurthi, Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29(1), 295–322 (2004) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Adimurthi, Prashanth, S.: Failure of Palais-Smale condition and blow-up analysis for the critical exponent problem in ℝ2. Proc. Indian Acad. Sci. Math. Sci. 107(3), 283–317 (1997) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Adimurthi, Yadava, S.L.: Multiplicity results for semilinear elliptic equations in a bounded domain of R 2 involving critical exponent. Ann. Sc. Norm. Super. Pisa, Cl. Sci. XVII, 481–504 (1990) MathSciNetGoogle Scholar
  5. 5.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973) CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Atkinson, F.V., Peletier, L.A.: Elliptic equations with critical growth. Math. Inst. Univ. Leiden, Rep. 21 (1986) Google Scholar
  7. 7.
    Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983) CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in R 2. Commun. Partial Differ. Equ. 17(3–4), 407–435 (1992) CrossRefzbMATHGoogle Scholar
  9. 9.
    Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chang, K.C.: Critical Point Theory and Its Applications. Modern Mathematics Series. Shanghai Kexue Jishu Chubanshe, Shanghai (1986). 316 pp. zbMATHGoogle Scholar
  11. 11.
    Chang, S.Y.A., Yang, P.: The inequality of Moser and Trudinger and applications to conformal geometry. Commun. Pure Appl. Math. 56(8), 1135–1150 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A 112(2), 332–336 (1978) (Italian) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cerami, G.: On the existence of eigenvalues for a nonlinear boundary value problem. Ann. Mat. Pura Appl. 124, 161–179 (1980) (Italian) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23(11), 1401–1412 (1994) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    de Figueiredo, D.G.: Semilinear elliptic systems: existence, multiplicity, symmetry of solutions. In: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. V, pp. 1–48 Google Scholar
  16. 16.
    de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55(2), 135–152 (2002) CrossRefzbMATHGoogle Scholar
  17. 17.
    de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in ℝ2 with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3(2), 139–153 (1995) CrossRefzbMATHGoogle Scholar
  18. 18.
    de Figueiredo, D.G., do Ó, J.M., Ruf, B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53(4), 1037–1054 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Iturriaga, L., Lorca, S., Ubilla, P.: A quasilinear problem without the Ambrosetti-Rabinowitz-type condition. Proc. R. Soc. Edinb. A 140(2), 391–398 (2010) CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ℝN. Proc. R. Soc. Edinb. A 129(4), 787–809 (1999) CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in R N. J. Funct. Anal. 262, 1132–1165 (2012) CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Lam, N., Lu, G.: N-Laplacian equations in R N with subcritical and critical growth without the Ambrosetti-Rabinowitz condition (2010). arXiv:1012.5489v1. To appear in Adv. Nonlinear Stud.
  23. 23.
    Lam, N., Lu, G.: Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth. Discrete Contin. Dyn. Syst. 32(6), 2187–2205 (2012) CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Lam, N., Lu, G.: The Moser-Trudinger and Adams inequalities and elliptic and subelliptic equations with nonlinearity of exponential growth. In: Recent Developments in Geometry and Analysis. Advanced Lectures in Mathematics, vol. 23, pp. 179–251 (2012) Google Scholar
  25. 25.
    Li, Y.X.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. Partial Differ. Equ. 14(2), 163–192 (2001) zbMATHGoogle Scholar
  26. 26.
    Li, Y.X., Liu, P.: A Moser-Trudinger inequality on the boundary of a compact Riemann surface. Math. Z. 250(2), 363–386 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Li, Y.X., Liu, P., Yang, Y.: Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2. Calc. Var. Partial Differ. Equ. 28(1), 59–83 (2007) CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Liu, Z., Wang, Z.: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4(4), 563–574 (2004) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Li, Y.Q., Wang, Z., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23(6), 829–837 (2006) CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Lu, G., Yang, Y.: Sharp constant and extremal function for the improved Moser-Trudinger inequality involving L p norm in two dimension. Discrete Contin. Dyn. Syst. 25(3), 963–979 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Lu, G., Yang, Y.: A sharpened Moser-Pohozaev-Trudinger inequality with mean value zero in R 2. Nonlinear Anal. 70(8), 2992–3001 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Miyagaki, O.H., Souto, M.A.S.: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equ. 245(12), 3628–3638 (2008) CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71) CrossRefMathSciNetGoogle Scholar
  34. 34.
    do Ó, J.M.: Semilinear Dirichlet problems for the N-Laplacian in ℝN with nonlinearities in the critical growth range. Differ. Integral Equ. 9(5), 967–979 (1996) zbMATHGoogle Scholar
  35. 35.
    do Ó, J.M., Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in ℝN. J. Differ. Equ. 246(4), 1363–1386 (2009) CrossRefzbMATHGoogle Scholar
  36. 36.
    Papageorgiou, N.S., Rocha, E.M.: Pairs of positive solutions for p-Laplacian equations with sublinear and superlinear nonlinearities which do not satisfy the AR-condition. Nonlinear Anal. 70(11), 3854–3863 (2009) CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS, vol. 65. AMS, Providence (1986) Google Scholar
  38. 38.
    Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in R 2. J. Funct. Anal. 219(2), 340–367 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Schechter, M., Zou, W.: Superlinear problems. Pac. J. Math. 214(1), 145–160 (2004) CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Shaw, M.C.: Eigenfunctions of the nonlinear equation Δu+νf(x,u)=0 in R 2. Pac. J. Math. 129(2), 349–356 (1987) CrossRefzbMATHGoogle Scholar
  41. 41.
    Struwe, M., Tarantello, G.: On multivortex solutions in Chern-Simons gauge theory. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 1(1), 109–121 (1998) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Szulkin, A., Zou, W.: Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187(1), 25–41 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967) MathSciNetzbMATHGoogle Scholar
  44. 44.
    Willem, M., Zou, W.: On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52(1), 109–132 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Zhou, H.: Positive solution for a semilinear elliptic equation which is almost linear at infinity. Z. Angew. Math. Phys. 49(6), 896–906 (1998) CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2012

Authors and Affiliations

  1. 1.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations