Journal of Geometric Analysis

, Volume 23, Issue 3, pp 1257–1289 | Cite as

Del Pezzo Surfaces with Many Symmetries

Article
  • 114 Downloads

Abstract

We classify smooth del Pezzo surfaces whose α-invariant of Tian is bigger than 1.

Keywords

Del Pezzo surface Fano manifold Alpha-invariant of Tian Kähler–Einstein metric Kähler–Ricci iterations Automorphisms 

Mathematics Subject Classification (2010)

14J45 32Q20 

Notes

Acknowledgements

The authors would like to thank the referee for very helpful comments, suggestions, and detailed corrections; the first author would like to thank Institut des Hautes Etudes Scientifiques for hospitality.

References

  1. 1.
    Cheltsov, I.: Log canonical thresholds of del Pezzo surfaces. Geom. Funct. Anal. 18, 1118–1144 (2008) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cheltsov, I., Kosta, D.: Computing α-invariants of singular del Pezzo surfaces. arXiv:1010.0043 [math] (2010)
  3. 3.
    Cheltsov, I., Shramov, C.: Log canonical thresholds of smooth Fano threefolds. Russian Math. Surveys 63, 859–958 (2008) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cheltsov, I., Shramov, C.: On exceptional quotient singularities. Geom. Topol. 15, 1843–1882 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dolgachev, I., Iskovskikh, V.: Finite subgroups of the plane Cremona group. Progr. Math. 269, 443–548 (2009) MathSciNetGoogle Scholar
  6. 6.
    Kollár, J.: Singularities of pairs. In: Algebraic Geometry Santa Cruz. Proceedings of Symposia in Pure Mathematics, vol. 62, pp. 221–287 (1997) Google Scholar
  7. 7.
    Lazarsfeld, R.: Positivity in Algebraic Geometry II. Springer, Berlin, (2004) MATHCrossRefGoogle Scholar
  8. 8.
    Markushevich, D., Prokhorov, Yu.: Exceptional quotient singularities. Amer. J. Math. 121, 1179–1189 (1999) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Rubinstein, Y.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics. Adv. Math. 218, 1526–1565 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Tian, G.: On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M)>0. Invent. Math. 89, 225–246 (1987) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Comm. Pure Appl. Math. 31, 339–411 (1978) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Yau, S., Yu, Y.: Gorenstein Quotient Singularities in Dimension Three. Memoirs of the American Mathematical Society, vol. 505. Am. Math. Soc., Providence (1993) Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2011

Authors and Affiliations

  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations