Journal of Geometric Analysis

, Volume 23, Issue 3, pp 1078–1084 | Cite as

Gunning–Narasimhan’s Theorem with a Growth Condition

Article

Abstract

Given a compact Riemann surface X and a point x0X, we construct a holomorphic function without critical points on the punctured Riemann surface R=X\{x0} which is of finite order at x0.

Keywords

Riemann surface Divisor Function of finite order 

Mathematics Subject Classification (2000)

32E10 32E30 32H02 14H05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.V.: Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 2nd edn. McGraw-Hill, New York (1966) Google Scholar
  2. 2.
    Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math. 191, 143–189 (2003) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gaier, D.: Lectures on Complex Approximation. Birkhäuser Boston, Boston (1987). Translated from the German by Renate McLaughlin MATHCrossRefGoogle Scholar
  4. 4.
    Gunning, R.C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann. 174, 103–108 (1967) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics. Springer, Berlin (1977) MATHCrossRefGoogle Scholar
  6. 6.
    Kusunoki, Y., Sainouchi, Y.: Holomorphic differentials on open Riemann surfaces. J. Math. Kyoto Univ. 11, 181–194 (1971) MathSciNetMATHGoogle Scholar
  7. 7.
    Majcen, I.: Closed holomorphic 1-forms without zeros on Stein manifolds. Math. Z. 257, 925–937 (2007) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. (2) 61, 197–278 (1955) MATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  3. 3.Graduate School of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations