Journal of Geometric Analysis

, Volume 23, Issue 2, pp 895–932 | Cite as

Hardy Spaces, Regularized BMO Spaces and the Boundedness of Calderón–Zygmund Operators on Non-homogeneous Spaces

  • The Anh Bui
  • Xuan Thinh Duong


One defines a non-homogeneous space (X,μ) as a metric space equipped with a non-doubling measure μ so that the volume of the ball with center x, radius r has an upper bound of the form r n for some n>0. The aim of this paper is to study the boundedness of Calderón–Zygmund singular integral operators T on various function spaces on (X,μ) such as the Hardy spaces, the L p spaces, and the regularized BMO spaces. This article thus extends the work of X. Tolsa (Math. Ann. 319:89–149, 2011) on the non-homogeneous space (ℝ n ,μ) to the setting of a general non-homogeneous space (X,μ). Our framework of the non-homogeneous space (X,μ) is similar to that of Hytönen (2011) and we are able to obtain quite a few properties similar to those of Calderón–Zygmund operators on doubling spaces such as the weak type (1,1) estimate, boundedness from Hardy space into L 1, boundedness from L into the regularized BMO, and an interpolation theorem. Furthermore, we prove that the dual space of the Hardy space is the regularized BMO space, obtain a Calderón–Zygmund decomposition on the non-homogeneous space (X,μ), and use this decomposition to show the boundedness of the maximal operators in the form of a Cotlar inequality as well as the boundedness of commutators of Calderón–Zygmund operators and BMO functions.


Non-homogeneous spaces Hardy spaces BMO Calderón–Zygmund operator 

Mathematics Subject Classification (2000)2010

42B20 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bui, T.A., Duong, X.T.: Endpoint estimates for maximal operator and boundedness of maximal commutators. Preprint Google Scholar
  2. 2.
    Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Di Fazio, G., Gutiérrez, C.E., Lanconelli, E.: Covering theorems, inequalities on metric spaces and applications to PDE’s. Math. Ann. 341(2), 255–291 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001) zbMATHCrossRefGoogle Scholar
  5. 5.
    Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hytönen, T.: A framework for non-homogenous analysis on metric spaces, and RBMO spaces of Tolsa. Preprint (2011) Google Scholar
  7. 7.
    Hytönen, T., Martikainen, H.: Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. Preprint Google Scholar
  8. 8.
    Hytönen, T., Yang, D., Yang, D.: The Hardy space H 1 on non-homogeneous metric spaces. Preprint Google Scholar
  9. 9.
    Journé, J.-L.: Calderón–Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983) zbMATHGoogle Scholar
  10. 10.
    Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 15, 703–726 (1997) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 9, 463–487 (1998) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for non doubling measures. Duke Math. J. 102, 533–565 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tchoundja, E.: Carleson measures for the generalized Bergman spaces via a T(1)-type theorem. Ark. Mat. 46(2), 377–406 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Tolsa, X.: BMO, H 1, and Calderón–Zygmund operators for non doubling measures. Math. Ann. 319, 89–149 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Tolsa, X.: A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón–Zygmund decomposition. Publ. Mat. 45, 163–174 (2001) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Verdera, J.: On the T(1) theorem for the Cauchy integral. Ark. Mat. 38, 183–199 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Volberg, A., Wick, B.D.: Bergman-type singular operators and the characterization of Carleson measures for Besov–Sobolev spaces on the complex ball. Preprint arXiv:0910.1142 (2009)

Copyright information

© Mathematica Josephina, Inc. 2011

Authors and Affiliations

  1. 1.Department of MathematicsMacquarie UniversitySydneyAustralia
  2. 2.Department of MathematicsUniversity of PedagogyHo Chi Minh CityVietnam

Personalised recommendations