Advertisement

Journal of Geometric Analysis

, Volume 23, Issue 2, pp 571–597 | Cite as

A Strong Oka Principle for Embeddings of Some Planar Domains into ℂ×ℂ

  • Tyson Ritter
Article

Abstract

Gromov, in his seminal 1989 paper on the Oka principle, introduced the notion of an elliptic manifold and proved that every continuous map from a Stein manifold to an elliptic manifold is homotopic to a holomorphic map. We show that a much stronger Oka principle holds in the special case of maps from certain open Riemann surfaces called circular domains into ℂ×ℂ, namely that every continuous map is homotopic to a proper holomorphic embedding. An important ingredient is a generalization to ℂ×ℂ of recent results of Wold and Forstnerič on the long-standing problem of properly embedding open Riemann surfaces into ℂ2, with an additional result on the homotopy class of the embeddings. We also give a complete solution to a question that arises naturally in Lárusson’s holomorphic homotopy theory, of the existence of acyclic embeddings of Riemann surfaces with abelian fundamental group into 2-dimensional elliptic Stein manifolds.

Keywords

Holomorphic embedding Riemann surface Oka principle Stein manifold Elliptic manifold Acyclic map Circular domain Fatou–Bieberbach domain 

Mathematics Subject Classification (2000)

32Q40 32E10 32H02 32H35 32M17 32M25 32Q28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd ed. Advanced Book Program. Benjamin/Cummings, Reading (1978) zbMATHGoogle Scholar
  2. 2.
    Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, 2nd ed. Applied Mathematical Sciences, vol. 75. Springer, New York (1988) zbMATHCrossRefGoogle Scholar
  3. 3.
    Alexander, H.: Explicit imbedding of the (punctured) disc into C 2. Comment. Math. Helv. 52(4), 539–544 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Andersén, E., Lempert, L.: On the group of holomorphic automorphisms of C n. Invent. Math. 110(2), 371–388 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bishop, E.: Mappings of partially analytic spaces. Am. J. Math. 83, 209–242 (1961) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dixon, P.G., Esterle, J.: Michael’s problem and the Poincaré-Fatou-Bieberbach phenomenon. Bull., New Ser., Am. Math. Soc. 15(2), 127–187 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Drinovec-Drnovšek, B., Forstnerič, F.: Strongly pseudoconvex domains as subvarieties of complex manifolds. Am. J. Math. 132(2), 331–360 (2010) zbMATHCrossRefGoogle Scholar
  8. 8.
    Eliashberg, Y., Gromov, M.: Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2+1. Ann. Math. 136(1), 123–135 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Forstnerič, F.: Interpolation by holomorphic automorphisms and embeddings in C n. J. Geom. Anal. 9(1), 93–117 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Forstnerič, F., Lárusson, F.: Survey of Oka theory. N.Y. J. Math. 17a, 11–38 (2011) zbMATHGoogle Scholar
  11. 11.
    Forstnerič, F., Løw, E.: Global holomorphic equivalence of smooth submanifolds in C n. Indiana Univ. Math. J. 46(1), 133–153 (1997) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Forstnerič, F., Løw, E., Øvrelid, N.: Solving the d- and \(\overline{\partial}\)-equations in thin tubes and applications to mappings. Mich. Math. J. 49(2), 369–416 (2001) zbMATHCrossRefGoogle Scholar
  13. 13.
    Forstnerič, F., Rosay, J.-P.: Approximation of biholomorphic mappings by automorphisms of C n. Invent. Math. 112(2), 323–349 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Forstnerič, F., Rosay, J.-P.: Erratum: “Approximation of biholomorphic mappings by automorphisms of \(\bold C^{n}\)”. Invent. Math. 118(3), 573–574 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in ℂ2. J. Math. Pures Appl. 91(1), 100–114 (2009) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Globevnik, J., Stensønes, B.: Holomorphic embeddings of planar domains into C 2. Math. Ann. 303(4), 579–597 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. Translations of Mathematical Monographs, vol. 26. Am. Math. Soc., Providence (1969) zbMATHGoogle Scholar
  18. 18.
    Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2(4), 851–897 (1989) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd ed. North-Holland Mathematical Library, vol. 7. North-Holland, Amsterdam (1990) zbMATHGoogle Scholar
  20. 20.
    Kaliman, S., Kutzschebauch, F.: Criteria for the density property of complex manifolds. Invent. Math. 172(1), 71–87 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kaliman, S., Kutzschebauch, F.: Density property for hypersurfaces \(UV=P(\overline{X})\). Math. Z. 258(1), 115–131 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kutzschebauch, F., Løw, E., Wold, E.F.: Embedding some Riemann surfaces into ℂ2 with interpolation. Math. Z. 262(3), 603–611 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Lárusson, F.: Model structures and the Oka principle. J. Pure Appl. Algebra 192(1–3), 203–223 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lárusson, F.: Mapping cylinders and the Oka principle. Indiana Univ. Math. J. 54(4), 1145–1159 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Laufer, H.B.: Imbedding annuli in C 2. J. Anal. Math. 26, 187–215 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Rosay, J.-P.: Straightening of arcs. Astérisque 217, 217–225 (1993). Colloque d’Analyse Complexe et Géométrie (Marseille, 1992) MathSciNetGoogle Scholar
  29. 29.
    Schürmann, J.: Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann. 307(3), 381–399 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Stehlé, J.-L.: Plongements du disque dans C 2. In: Séminaire Pierre Lelong (Analyse), Année 1970–1971. Lecture Notes in Math., vol. 275, pp. 119–130. Springer, Berlin (1972) Google Scholar
  31. 31.
    Stolzenberg, G.: Uniform approximation on smooth curves. Acta Math. 115, 185–198 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Stout, E.L.: Polynomial Convexity. Progress in Mathematics, vol. 261. Birkhäuser Boston, Boston (2007) zbMATHGoogle Scholar
  33. 33.
    Tóth, Á., Varolin, D.: Holomorphic diffeomorphisms of complex semisimple Lie groups. Invent. Math. 139(2), 351–369 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Tóth, Á., Varolin, D.: Holomorphic diffeomorphisms of semisimple homogeneous spaces. Compos. Math. 142(5), 1308–1326 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Varolin, D.: The density property for complex manifolds and geometric structures. II. Int. J. Math. 11(6), 837–847 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Varolin, D.: The density property for complex manifolds and geometric structures. J. Geom. Anal. 11(1), 135–160 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Wold, E.F.: Embedding Riemann surfaces properly into ℂ2. Int. J. Math. 17(8), 963–974 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Wold, E.F.: Proper holomorphic embeddings of finitely and some infinitely connected subsets of ℂ into ℂ2. Math. Z. 252(1), 1–9 (2006) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations