Journal of Geometric Analysis

, Volume 21, Issue 4, pp 1044–1084 | Cite as

Differentiability of Intrinsic Lipschitz Functions within Heisenberg Groups

  • Bruno FranchiEmail author
  • Raul Serapioni
  • Francesco Serra Cassano


We study the notion of intrinsic Lipschitz graphs within Heisenberg groups, focusing our attention on their Hausdorff dimension and on the almost everywhere existence of (geometrically defined) tangent subgroups. In particular, a Rademacher type theorem enables us to prove that previous definitions of rectifiable sets in Heisenberg groups are natural ones.


Heisenberg groups Carnot–Carathéodory metric Intrinsic Lipschitz maps Rademacher’s theorem Rectifiability 

Mathematics Subject Classification (2000)

58C20 22E30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318, 527–555 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185, 1–80 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, London (2000) zbMATHGoogle Scholar
  4. 4.
    Arena, G., Serapioni, R.: Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs. Calc. Var. Partial. Differ. Equ. 35(4), 517–536 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bigolin, F., Vittone, D.: Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group. Publ. Mat. 54(1), 159–172 (2010) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007) zbMATHGoogle Scholar
  7. 7.
    Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cheeger, J., Kleiner, B.: Generalized differential and bi-Lipschitz nonembedding in L 1. C. R. Math. Acad. Sci. Paris 343(5), 297–301 (2006) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cheeger, J., Kleiner, B.: Differentiating maps into L 1 and the geometry of BV functions. Ann. Math. 171(2), 1347–1385 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Citti, G., Manfredini, M.: Blow-up in non-homogeneous Lie groups and rectifiability. Houst. J. Math. 31(2), 333–353 (2005) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Citti, G., Manfredini, M.: Implicit function theorem in Carnot–Carathéodory spaces. Commun. Contemp. Math. 8(5), 657–680 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cole, D., Pauls, S.D.: C 1 hypersurfaces of the Heisenberg group are N-rectifiable. Houst. J. Math. 32(3), 307–326 (2006) MathSciNetGoogle Scholar
  14. 14.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) zbMATHGoogle Scholar
  15. 15.
    Federer, H.: Geometric Measure Theory. Springer, Berlin (1969) zbMATHGoogle Scholar
  16. 16.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982) zbMATHGoogle Scholar
  17. 17.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321, 479–531 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Commun. Anal. Geom. 11(5), 909–944 (2003) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Intrinsic Lipschitz graphs in Heisenberg groups. J. Nonlinear Convex Anal. 7(3), 423–441 (2006) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Franchi, B., Serapioni, R., Serra Cassano, F.: Regular submanifolds, graphs and area formula in Heisenberg groups. Adv. Math. 211(1), 152–203 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot–Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gromov, M.: Carnot–Carathéodory spaces seen from within. In: Bellaïche, A., Risler, J. (eds.) Subriemannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996) Google Scholar
  24. 24.
    Heinonen, J.: Lectures on Lipschitz analysis. Report, University of Jyväskylä, Department of Mathematics and Statistics, 100. Jyväskylä (2005) Google Scholar
  25. 25.
    Heinonen, J.: Nonsmooth calculus. Bull. Am. Math. Soc. 44, 163–232 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Korányi, A., Reimann, H.M.: Foundation for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111, 1–87 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lloyd, N.G.: Degree Theory. Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978) zbMATHGoogle Scholar
  28. 28.
    Magnani, V.: Elements of Geometric Measure Theory on Sub-Riemannian Groups. Tesi di Perfezionamento. Scuola Normale Superiore, Pisa (2003) Google Scholar
  29. 29.
    Magnani, V.: Towards differential calculus in stratified groups. Preprint (2007) Google Scholar
  30. 30.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  31. 31.
    Mattila, P., Serapioni, R., Serra Cassano, F.: Characterizations of intrinsic rectifiability in Heisenberg groups. Ann. Scuola Norm. Super. Pisa (to appear) Google Scholar
  32. 32.
    Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21, 35–45 (1985) zbMATHGoogle Scholar
  33. 33.
    Pansu, P.: Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129, 1–60 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Pauls, S.D.: A notion of rectifiability modeled on Carnot groups. Indiana Univ. Math. J. 53(1), 49–81 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Semmes, S.: On the non existence of biLipschitz parametrization and geometric problems about A weights. Rev. Mat. Iberoam. 12, 337–410 (1996) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993) zbMATHGoogle Scholar
  37. 37.
    Varopoulos, N.Th., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992) Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2010

Authors and Affiliations

  • Bruno Franchi
    • 1
    Email author
  • Raul Serapioni
    • 2
  • Francesco Serra Cassano
    • 2
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  2. 2.Dipartimento di MatematicaUniversità di TrentoPovo (Trento)Italy

Personalised recommendations