Journal of Geometric Analysis

, Volume 20, Issue 4, pp 1026–1055 | Cite as

On the Existence of Min-Max Minimal Torus

  • Xin Zhou


In this paper, we will study the existence problem of min-max minimal torus. We use classical conformal invariant geometric variational methods. We prove a theorem about the existence of min-max minimal torus in Theorem 5.1. First we prove a strong uniformization result (Proposition 3.1) using the method of Ahlfors and Bers (Ann. Math. 72(2):385–404, 1960). Then we use this proposition to choose good parameterization for our min-max sequences. We prove a compactification result (Lemma 4.1) similar to that of Colding and Minicozzi (Width and finite extinction time of Ricci flow, 0707.0108 [math.DG], 2007), and then give bubbling convergence results similar to that of Ding et al. (Invent. math. 165:225–242, 2006). In fact, we get an approximating result similar to the classical deformation lemma (Theorem 1.1).


Min-max minimal torus Geometric variational methods Energy identity Deformation lemma 

Mathematics Subject Classification (2000)

58E20 58E12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlfors, L., Bers, L.: Riemann’s mapping theorem for variable metrics. Ann. Math. 72(2), 385–404 (1960) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, J., Tian, G.: Compactification of moduli space of harmonic mappings. Comment. Math. Helv. 74, 201–237 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Colding, T., Minicozzi, W. II: Minimal surfaces. Courant Lecture Notes in Mathematics, vol. 4. New York University, Courant Institute of Mathematical Sciences, New York (1999) zbMATHGoogle Scholar
  4. 4.
    Colding, T., Minicozzi, W. II: Width and finite extinction time of Ricci flow. 0707.0108 [math.DG]
  5. 5.
    Ding, W.: Lectures on the heat flow of harmonic maps. Preprint Google Scholar
  6. 6.
    Ding, W., Li, J., Liu, Q.: Evolution of minimal torus in Riemannian manifolds. Invent. Math. 165, 225–242 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jost, J.: Two Dimensional Geometric Variational Problems. Wiley, Chichester (1991) zbMATHGoogle Scholar
  8. 8.
    Jost, J.: Compact Riemann Surfaces. Springer, Berlin (2002) zbMATHGoogle Scholar
  9. 9.
    Qing, J.: Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114, 458–466 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(2), 1–24 (1981) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Sacks, J., Uhlenbeck, K.: Minimal immersions of closed Riemann surfaces. Trans. Am. Math. Soc. 271, 639–652 (1982) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. Math. 110(2), 127–142 (1979) CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2010

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations