Journal of Geometric Analysis

, Volume 19, Issue 4, pp 809–816 | Cite as

Convergence of Ricci Flow on ℝ2 to Flat Space

Article

Abstract

We prove that, starting at an initial metric \(g(0)=e^{2u_{0}}(dx^{2}+dy^{2})\) on ℝ2 with bounded scalar curvature and bounded u0, the Ricci flow tg(t)=−Rg(t)g(t) converges to a flat metric on ℝ2.

Keywords

Ricci flow Convergence Fast diffusion Conformally flat 

Mathematics Subject Classification (2000)

53C44 35K55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chow, B., Knopf, D.: The Ricci Flow: An Introduction. Math. Surveys and Monographs, vol. 110. Am. Math. Soc., Providence (2004) MATHGoogle Scholar
  2. 2.
    Daskalopoulos, P., del Pino, M.A.: On a singular diffusion equation. Commun. Anal. Geom. 3, 523–542 (1995) MATHMathSciNetGoogle Scholar
  3. 3.
    Daskalopoulos, P., Sesum, N.: Eternal solutions to the Ricci flow on ℝ2. Int. Math. Res. Not. (2006). Art. ID 83610, 20 pp. Google Scholar
  4. 4.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983) MATHGoogle Scholar
  5. 5.
    Hsu, S.Y.: Large time behaviour of solutions of the Ricci flow equation on ℝ2. Pac. J. Math. 197(1), 25–41 (2001) MATHCrossRefGoogle Scholar
  6. 6.
    Hsu, S.Y.: Asymptotic profile of solutions of a singular diffusion equation as t→∞. Nonlinear Anal. 48(6), 781–790 (2002) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Shi, W.X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30, 303–394 (1989) MATHGoogle Scholar
  8. 8.
    Wu, L.F.: Ricci flow on complete ℝ2. Commun. Anal. Geom. 1(3), 439–472 (1993) MATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2009

Authors and Affiliations

  1. 1.University of OregonEugeneUSA
  2. 2.Trinity CollegeHartfordUSA

Personalised recommendations