Journal of Geometric Analysis

, Volume 18, Issue 1, pp 192–248 | Cite as

Hardy Spaces of Differential Forms on Riemannian Manifolds



Let M be a complete connected Riemannian manifold. Assuming that the Riemannian measure is doubling, we define Hardy spaces H p of differential forms on M and give various characterizations of them, including an atomic decomposition. As a consequence, we derive the H p -boundedness for Riesz transforms on M, generalizing previously known results. Further applications, in particular to H functional calculus and Hodge decomposition, are given.


Riemannian manifolds Hardy spaces Differential forms Riesz transforms 

Mathematics Subject Classification (2000)

42B30 58J05 47F05 47A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auscher, P.: On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on ℝn and related estimates. Mem. Am. Math. Soc. 186(871) (2007) Google Scholar
  2. 2.
    Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of ℝn. J. Funct. Anal. 201(1), 148–184 (2003) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Auscher, P., Tchamitchian, P.: Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). Ann. Inst. Fourier 45(3), 721–778 (1995) MATHMathSciNetGoogle Scholar
  4. 4.
    Auscher, P., Tchamitchian, P.: Square Root Problem for Divergence Operators and Related Topics. Astérisque, vol. 249. Soc. Math. France (1998) Google Scholar
  5. 5.
    Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on ℝn. Ann. Math. 156, 633–654 (2002) MATHMathSciNetGoogle Scholar
  6. 6.
    Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transforms on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. 37(6), 911–957 (2004) MATHMathSciNetGoogle Scholar
  7. 7.
    Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and applications to Hardy spaces. Unpublished manuscript Google Scholar
  8. 8.
    Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds. C. R. Math. Acad. Sci. Paris 344(2), 103–108 (2007) MATHMathSciNetGoogle Scholar
  9. 9.
    Axelsson, A., Keith, S., McIntosh, A.: Quadratic estimates and functional calculi of perturbed Dirac operators. Invent. Math. 163, 455–497 (2006) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bakry, D.: Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In: Séminaire de Probabilités, XXI. Lecture Notes in Math., vol. 1247, pp. 137–172. Springer, Berlin (1987) CrossRefGoogle Scholar
  11. 11.
    Bishop, R., Crittenden, R.: Geometry of Manifolds. Academic, New York (1964) MATHGoogle Scholar
  12. 12.
    Carron, G.: Formes harmoniques L 2 sur les variétés non-compactes, Rend. Mat. Appl. 7(21), 14, 87–119 (2001) Google Scholar
  13. 13.
    Carron, G., Coulhon, T., Hassell, A.: Riesz transform and L p cohomology for manifolds with Euclidean ends. Duke Math. J. 133(1), 59–93 (2006) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Coifman, R.: A real-variable characterization of H p. Studia Math. 51, 269–274 (1974) MATHMathSciNetGoogle Scholar
  15. 15.
    Coifman, R., Weiss, G.: Analyse harmonique non commutative sur certains espaces homogènes. Lecture Notes in Math., vol. 242. Springer, New York (1971) MATHGoogle Scholar
  16. 16.
    Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977) MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Coifman, R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Coulhon, T., Duong, X.T.: Riesz transforms for 1≤p≤2. Trans. Am. Math. Soc. 351(3), 1151–1169 (1999) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Coulhon, T., Duong, X.T.: Riesz transforms for p>2. C. R. Acad. Sci. Paris Sér. I Math. 332(11), 975–980 (2001) MATHMathSciNetGoogle Scholar
  20. 20.
    Coulhon, T., Saloff-Coste, L.: Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoam. 11, 687–726 (1995) MATHMathSciNetGoogle Scholar
  21. 21.
    Coulhon, T., Zhang, Q.S.: Large time behaviour of heat kernels on forms. J. Differ. Geom. 77(3), 353–384 (2007) MATHMathSciNetGoogle Scholar
  22. 22.
    David, G., Journé, J.L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1, 1–56 (1985) MATHGoogle Scholar
  23. 23.
    Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992) MATHMathSciNetGoogle Scholar
  24. 24.
    Davies, E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132(1), 141–169 (1995) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    De Rham, G.: Variétés différentiables, formes, courants, formes harmoniques, 3rd edn. Hermann, Paris (1973) MATHGoogle Scholar
  26. 26.
    Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129, 137–195 (1972) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Commun. Pure Appl. Math. 12, 1–11 (1959) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gilbert, J.E., Hogan, J.A., Lakey, J.D.: Atomic decomposition of divergence-free Hardy spaces. In: Mathematica Moraviza, special volume, Proc. IWAA, pp. 33–52 (1997) Google Scholar
  29. 29.
    Grigor’yan, A.: Heat equation on a non-compact Riemannian manifold. Math. USSR Sb. 72(1), 47–77 (1992) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Preprint, available at
  31. 31.
    Latter, R.H.: A characterization of H p(ℝn) in terms of atoms. Studia Math. 62(1), 93–101 (1978) MATHMathSciNetGoogle Scholar
  32. 32.
    Lohoué, N.: Estimation des projecteurs de De Rham Hodge de certaines variétés riemaniennes non compactes. Math. Nachr. 279(3), 272–298 (2006) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lou, Z., McIntosh, A.: Hardy spaces of exact forms on ℝn. Trans. Am. Math. Soc. 357(4), 1469–1496 (2005) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Marias, M., Russ, E.: H 1-boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemannian manifolds. Ark. Mat. 41, 115–132 (2003) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Martell, J.-M.: Desigualdades con pesos en el análisis de Fourier: de los espacios de tipo homogéneo a las medidas no doblantes. Ph.D. Universidad Autónoma de Madrid (2001) Google Scholar
  36. 36.
    McIntosh, A.: Operators which have an H functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations. Proc. Centre for Math. and Appl., vol. 14, pp. 210–231. Australian National University, Canberra (1986) Google Scholar
  37. 37.
    Meyer, Y.: Ondelettes et opérateurs, t. II. Hermann (1990) Google Scholar
  38. 38.
    Necas, J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris, Academia, Prague (1967) Google Scholar
  39. 39.
    Russ, E.: H 1L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs. Potential Anal. 14, 301–330 (2001) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type. In: CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis and Related Topic”. Proc. of the Centre for Math. and Appl., vol. 42, pp. 125–135. Australian National University, Canberra (2007) Google Scholar
  41. 41.
    Saloff-Coste, L.: Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal. 4(4), 429–467 (1995) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Schwarz, G.: Hodge Decomposition, a Method for Solving Boundary Value Problems. Lecture Notes in Math., vol. 1607. Springer, Berlin (1985) Google Scholar
  43. 43.
    Semmes, S.: A primer on Hardy spaces and some remarks on a theorem of Evans and Müller. Commun. Partial Differ. Equ. 19, 277–319 (1994) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247(3), 643–662 (2004) MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  46. 46.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993) MATHGoogle Scholar
  47. 47.
    Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables, I: the theory of H p spaces. Acta Math. 103, 25–62 (1960) MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Strichartz, R.S.: The Hardy space H 1 on manifolds and submanifolds. Can. J. Math. 24, 915–925 (1972) MathSciNetGoogle Scholar
  49. 49.
    Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983) MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Wilson, J.: On the atomic decomposition for Hardy spaces. Pac. J. Math. 116, 201–207 (1985) MATHGoogle Scholar
  51. 51.
    Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959) MATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2007

Authors and Affiliations

  1. 1.Université de Paris-Sud, Orsay et CNRS UMR 8628Orsay CedexFrance
  2. 2.Centre for Mathematics and its Applications, Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia
  3. 3.LATP, CNRS UMR 6632, Faculté des Sciences et TechniquesUniversité Paul CézanneMarseille Cedex 20France

Personalised recommendations