Advertisement

Numerical Study of Heat Transfer and Entropy Generation of Nanofluids Buoyant-Thermocapillary Convection around a Gas Bubble

  • Yanni Jiang
  • Xiaoming ZhouEmail author
Original Article
  • 11 Downloads

Abstract

Buoyant-thermocapillary convection is an important heat transfer mechanism in nucleate boiling and nanofluids has been used as heat transfer medium extensively, so it is necessary to study the heat enhancement mechanism of nanofluids buoyant-thermocapillary convection around gas bubble. The present paper first reports the flow, heat transfer and entropy generation characteristics of nanofluids buoyant-thermocapillary convection around a gas bubble in a cavity, and the effects of nanoparticles volume fraction and size on buoyant-thermocapillary convection are discussed. The results show that, as nanoparticles volume fraction increases from 0 to 0.05, the convective intensity and entropy generation of buoyant-thermocapillary convection decreases gradually, and the average Nusselt number of bottom wall first increases and then decreases. As nanoparticles volume fraction is 0.02 the average Nusselt number is the largest and increased by 3.1% relative to that of pure fluid. As nanoparticles diameter increases from 20 nm to 80 nm, the temperature and flow fields indicate as the same structure, but the entropy generation increases gradually. The average Nusselt number of bottom wall increases slightly with nanoparticles diameter increasing, particularly, the average Nusselt number for nanoparticles diameter (dp) 80 nm is increased by 2.28% relative to that of dp = 20 nm.

Keywords

Nanofluids Buoyant convection Thermocapillary convection Two-phase mixture model Gas bubble Entropy generation 

Nomenclature

a

acceleration, m2/s

Cp

specific heat, J/kgK

CB

Boltzmann’s constant, 1.38066 × 10−23 J/K

dp

nanoparticles diameter, nm

f

friction factor

fdrag

drag function

g

gravitational acceleration, m/s2

H

cavity height, m

L

cavity length, m

Lr

arc length of gas bubble interface, m

Nu

Nusselt number

P

pressure, Pa

Pr

Prandtl number, Pr = Cpμ/λ

r

r-direction coordinate, m

Rep

nanoparticle Reynolds number, \( {\operatorname{Re}}_p=\frac{2\cdot {\rho}_f\cdot {C}_B\cdot T}{\pi \cdot {\mu}_f^2\cdot d} \)

S

entropy generation, W/m3K

T

fluid temperature, K

\( \overset{\rightharpoonup }{V} \)

velocity vector, m/s

u

r-velocity, m/s

v

z-velocity, m/s

z

z-direction coordinate, m

Greek Symbols

λ

thermal conductivity, W/mK

ν

kinematic viscosity, m2/s

αp

nanoparticles volume fraction

μ

dynamic viscosity, kg/ms

ρ

density, kg/m3

τ

wall shear stress, Pa

Subscripts

f

base fluid

nf

nanofluid

p

nanoparticles

h

hot wall

c

cold wall

Notes

Acknowledgements

This paper is supported by National Natural Science Foundation of China (No.11675077).

References

  1. Abdollahi, A., Salimpour, M.R., Etesami, N.: Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl. Therm. Eng. 111, 1101–1110 (2017)CrossRefGoogle Scholar
  2. Abdullah, A.A., Althobaiti, S.A., Lindsay, K.A.: Marangoni convection in water-alumina nanofluids: Dependence on the nanoparticle size. European J. Mechanics-B/Fluids. 67, 259–268 (2018)MathSciNetCrossRefGoogle Scholar
  3. Alloui, Z., Alloui, Y., Vasseur, P.: Control of Rayleigh-Bénard convection in a fluid layer with internal heat generation. Microgravity Science and Technology. 30, 885–897 (2018)CrossRefGoogle Scholar
  4. Al-Sharafi, A., Sahin, A.Z., Yilbas, B.S., et al.: Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets, Numerical Heat Transfer. Part A: Applications. 69(7), 763–780 (2016)Google Scholar
  5. Aminfar, H., Mohammadpourfard, M., Mohseni, F.: Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone. Int. J. Mech. Sci. 65(1), 147–156 (2012)CrossRefGoogle Scholar
  6. Arlabosse, P., Tadrist, L., Tadrist, H., Pantaloni, J.: Experimental analysis of the heat transfer induced by thermocapillary convection around a bubble, trans. ASME. J. Heat Transf. 122(1), 66–73 (2000)CrossRefGoogle Scholar
  7. Betz, J., Straub, J.: Numerical and experimental study of the heat transfer and fluid flow by thermocapillary convection around gas bubbles. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(2–3), 215–227 (2001)CrossRefGoogle Scholar
  8. Bhunia, A., Kamotani, Y.: Flow around a bubble on a heated wall in a crossflowing liquid under microgravity condition. Int. J. Heat Mass Transf. 44(20), 3895–3905 (2001)CrossRefGoogle Scholar
  9. Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 231, 99–103 (1995)Google Scholar
  10. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52, 789–793 (2011)CrossRefGoogle Scholar
  11. Corcione, M.: A semi-empirical model for predicting the effective dynamic viscosity of nanoparticle suspensions. Heat. Transf. Eng. 33, 575–583 (2012)CrossRefGoogle Scholar
  12. Dadjoo, M., Etesami, N., Esfahany, M.N.: Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 124, 353–361 (2017)CrossRefGoogle Scholar
  13. Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids Science and Technology. John Wiley & Sons, Hoboken (2008)Google Scholar
  14. Gevorgyan, G.S., Petrosyan, K.A., Hakobyan, R.S., et al.: Experimental investigation of Marangoni convection in nanofluids, J. Contemp. Phys. (Armenian Academy of Sciences). 52(4), 362–365 (2017)CrossRefGoogle Scholar
  15. Gireesha, B.J., Sampath Kumar, P.B., Mahanthesh, B., Shehzad, S.A., Abbasi, F.M.: Nonlinear gravitational and radiation aspects in Nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Science and Technology. 30(3), 257–264 (2018)CrossRefGoogle Scholar
  16. Hayat, T., Shah, F., Alsaedi, A., Waqas, M.: Numerical simulation for magneto Nanofluid flow through a porous space with melting heat transfer. Microgravity Science and Technology. 30(3), 265–275 (2018)CrossRefGoogle Scholar
  17. Jiang, Y.N., Xu, Z.: Numerical Investigation of Nanofluid Thermocapillary Convection Based on Two-Phase Mixture Model. Microgravity Science and Technology. 29(5), 365–370 (2017)CrossRefGoogle Scholar
  18. Kenning, D.B.R., Kao, Y.S.: Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int. J. Heat Mass Transf. 15(9), 1709–1717 (1972)CrossRefGoogle Scholar
  19. Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)CrossRefGoogle Scholar
  20. Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow. 23(4), 497–508 (2002)CrossRefGoogle Scholar
  21. Kolsi, L., Lajnef, E., Aich, W., et al.: Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alexandria Engineering J. 56(1), 71–79 (2017)CrossRefGoogle Scholar
  22. Koukan, E., Wozniak, G., Wozniak, K., Siekmann, J.: Experimental study of flow fields around small gas bubbles under the combined action of buoyancy and thermocapillarity. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(4–5), 437–441 (2001)CrossRefGoogle Scholar
  23. Larkin, B.K.: Thermocapillary flow around hemispherical bubble. AICHE J. 16(1), 101–107 (1970)CrossRefGoogle Scholar
  24. Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow, 288, technical research Center of Finland. VTT Publications. 3(2), 9–18 (1996)Google Scholar
  25. O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection: some aspects of bubble geometry. Microgravity Sci. Technol. 20(3–4), 319–325 (2008)CrossRefGoogle Scholar
  26. O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection. Interdisciplinary Trans. Phenom.: Ann. N.Y. Acad. Sci. 1161, 304–320 (2009a)Google Scholar
  27. O’Shaughnessy, S.M., Robinson, A.J.: The influence of the magnitude of gravitational acceleration on the Marangoni convection about an isolated bubble under a heated wall. Heat Transfer Eng. 30, 1–13 (2009b)CrossRefGoogle Scholar
  28. O’Shaughnessy, S.M., Robinson, A.J.: Heat transfer near an isolated hemispherical gas bubble: the combined influence of thermocapillarity and buoyancy. Int. J. Heat Mass Transf. 62, 422–434 (2013)CrossRefGoogle Scholar
  29. O'Shaughnessy, S.M., Robinson, A.J.: Convective heat transfer due to thermal Marangoni flow about two bubbles on a heated wall. Int. J. Therm. Sci. 78, 101–110 (2014)CrossRefGoogle Scholar
  30. Petrovic, S., Robinson, T., Judd, R.L.: Marangoni heat transfer in subcooled nucleate pool boiling. Int. J. Heat Mass Transf. 47(23), 5115–5128 (2004)CrossRefGoogle Scholar
  31. Raj, R., Jungho, K., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transf. 131, 091502–091510 (2009)CrossRefGoogle Scholar
  32. Saleh, H., Hashim, I.: Buoyant Marangoni convection of nanofluids in square cavity. Appl. Math. Mech. 36(9), 1169–1184 (2015)MathSciNetCrossRefGoogle Scholar
  33. Schiller, L., Naumann, A.: A drag coefficient correlation. Z Ver. Deutsch Ing. 77(1), 318–320 (1935)Google Scholar
  34. Shahid, A., Zhou, Z., Bhatti, M.M., Tripathi, D.: Magnetohydrodynamics Nanofluid flow containing Gyrotactic microorganisms propagating over a stretching surface by successive Taylor series linearization method. Microgravity Science and Technology. 30(4), 445–455 (2018)CrossRefGoogle Scholar
  35. Sheikholeslami, M., Chamkha, A.J.: Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J. Molecular Liquids. 225, 750–757 (2017)CrossRefGoogle Scholar
  36. Straub, J.: The role of surface tension for two-phase heat and mass transfer in the absence of gravity. Exp. Thermal Fluid Sci. 9(3), 253–273 (1994)CrossRefGoogle Scholar
  37. Straub, J., Zell, M., Vogel, B.: What we learn from boiling under microgravity. Microgravity Sci. Technol. 6(4), 239–247 (1993)Google Scholar
  38. Straub, J., Betz, J., Marek, R.: Enhancement of heat transfer by thermocapillary convection around bubbles-a numerical study. Numerical Heat Transfer, Part A. 25, 501–518 (1994)CrossRefGoogle Scholar
  39. Wen, D., Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J. Nanopart. Res. 7(2–3), 265–274 (2005)CrossRefGoogle Scholar
  40. Wozniak, G.: Optical whole-field methods for thermo-convective flow analysis in microgravity. Measure. Sci. Technol. 10(10), 878–885 (1999)CrossRefGoogle Scholar
  41. Wozniak, G., Wozniak, K.: Buoyancy and thermocapillary flow analysis by the combined use of liquid crystals and PIV. Exp. Fluids. 17(3), 141–146 (1994)CrossRefGoogle Scholar
  42. Wozniak, K., Wozniak, G.: Temperature gradient driven flow experiments of two interacting bubbles on a hot wall. Heat Mass Transfer/Waerme-und Stoffuebertragung. 33(5–6), 363–369 (1998)CrossRefGoogle Scholar
  43. Wozniak, K., Wozniak, G., Roesgen, T.: Particle-image-velocimetry applied to thermocapillary convection. Exp. Fluids. 10(1), 12–16 (1990)CrossRefGoogle Scholar
  44. You, S.M., Kim, J.H., Kim, K.H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 83(16), 3374–3376 (2003)CrossRefGoogle Scholar
  45. Zhuang, Y.J., Zhu, Q.Y.: Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int. J. Heat Mass Transf. 118, 686–707 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations