Microgravity Science and Technology

, Volume 31, Issue 2, pp 177–184 | Cite as

Surface Tension and Viscosity of Cu50Zr50 Measured by the Oscillating Drop Technique on Board the International Space Station

  • Markus MohrEmail author
  • R. K. Wunderlich
  • S. Koch
  • P. K. Galenko
  • A. K. Gangopadhyay
  • K. F. Kelton
  • J. Z. Jiang
  • H.-J. Fecht
Original Article


The surface tension and viscosity of equilibrium and supercooled liquids of Cu50Zr50 were measured in the containerless electromagnetic levitator ISS-EML in the European space laboratory Columbus on board the International Space Station (ISS) under microgravity using high-speed camera recordings. From 1250 K to 1475 K, the surface tension follows the relation σ(T) = (1.58 ± 0.01) N/m – (3.1 ± 0.6) · 10−4 N/m · K · (T – 1209 K). A frequency shift correction was applied to remove the influence of sample rotation on the measured surface tension. Within the investigated temperature range, the viscosity can be expressed by an Arrhenius temperature dependence η(T) = η0 · exp(EA/kBT), with η0 = (0.08 ± 0.02) mPa·s and EA = (0.58 ± 0.03) eV.


Surface tension Viscosity Electromagnetic levitation International Space Station Oscillating drop method 



M. M., R. K. W. and H.-J. F. acknowledge the continued support by the German Space Agency DLR under contract 50WM1759 and the support by the European Space Agency ESA under contract AO-2009-1020.

S.K. and P.K.G. acknowledge the support from the German Space Center Space Management, contract No. 50WM1541, and from the Russian Scientific Foundation under the project no. 16-11-10095.

The work at the Washington University in St. Louis was supported by NASA under grants NNX10AU19G and NNX16AB52G. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NASA.

The work at the Zhejiang University in China was supported by the international cooperation project of China Manned Space Program, the National Natural Science Foundation of China (U1832203), National Key Research and Development Program of China (2016YFB0701203 and 2017YFA0403400), and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.

The support from German Space Agency Research Center Cologne in conducting the experiments on MSL-EML and support in experiment preparation is gratefully acknowledged by all authors.


  1. Amore, S., Brillo, J., Egry, I., Novakovic, R.: Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling. Appl. Surf. Sci. 257, 7739–7745 (2011)CrossRefGoogle Scholar
  2. Annamalai, P., Trinh, E., Wang, T.G.: Experimental study of the oscillations of a rotating drop. J. Fluid Mech. 158, 317–327 (1985)CrossRefGoogle Scholar
  3. Baes, C.F., Kellog, H.H.: Effect of dissolved Sulphur on the surface tension of liquid copper. JOM 5, 643–648 (1953)CrossRefGoogle Scholar
  4. Basaran, O.A.: Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169–198 (1992)CrossRefGoogle Scholar
  5. Brillo, J., Lauletta, G., Vaianella, L., Arato, E., Giuranno, D., Novakovic, R., Ricci, E.: Surface tension of liquid Ag-Cu binary alloys. ISIJ Int. 54, 2115–2119 (2014)CrossRefGoogle Scholar
  6. Busse, F.H.: Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 1–8 (1984)MathSciNetCrossRefGoogle Scholar
  7. Chandrasekhar, S.: The oscillations of a viscous liquid globe. Proc. Math. Soc. 9, 141–149 (1959)MathSciNetCrossRefGoogle Scholar
  8. Chandrasekhar, S.: The stability of a rotating liquid drop. Proc. Royal Soc. Lond., Series A. 286, 1–26 (1965)MathSciNetCrossRefGoogle Scholar
  9. Cummings, D., Blackburn, D.: Oscillations of magnetically levitated. Aspherical Droplets, J. Fluid Mech. 224, 395–416 (1991)CrossRefGoogle Scholar
  10. Eckler, K., Egry, I., Herlach, D.M.: Measurement of surface tension on levitated oscillating metallic drops. Mater. Sci. Eng. A. 133, 718–721 (1991)CrossRefGoogle Scholar
  11. Egry, I.: Surface tension measurements of liquid metals by the oscillating drop technique. J. Mater. Sci. 26, 2997–3003 (1991)CrossRefGoogle Scholar
  12. Fecht, H.-J., Wunderlich, R.K.: Fundamentals of liquid processing in low earth orbit: from Thermophysical properties to microstructure formation in metallic alloys. JOM 69, 1261–1268 (2017)CrossRefGoogle Scholar
  13. Fecht, H.-J., Wunderlich, R., Battezzati, L., Etay, J., Ricci, E., Seetharaman, S., Egry, I.: Thermophysical properties of materials. Europhysics News. 39, 19–21 (2008)CrossRefGoogle Scholar
  14. Frohberg, M. G., Roesner-Kuhn, M., and Kuppermann, G.: International Workshop on Nucleation and Thermophysical Properties of Undercooled Melts, March 4–6, Physikzentrum Bad Honnef (1998)Google Scholar
  15. Galenko, P.K., Hanke, R., Paul, P., Koch, S., Rettenmayer, M., Gegner, J., Herlach, D.M., Dreier, W., Kharanzhevski, E.V.: Solidification kinetics of a cu-Zr alloy: ground-based and microgravity experiments, IOP Conf. Ser.: Mater. Sci. Eng. 192, 012028 (2017)Google Scholar
  16. Gallois, B., Lupis, C.H.P.: Effect of oxygen on the surface tension of liquid copper. Metall. Trans. B. 12B, 549 (1981)CrossRefGoogle Scholar
  17. Hao, S.G., Wang, C.Z., Kramer, M.J., Ho, K.M.: Microscopic origin of slow dynamics at the good glass forming composition range in Zr1-xCux metallic liquids. J. Appl. Phys. 107, 053511 (2010)CrossRefGoogle Scholar
  18. Herlach, D. M.: Solidification and crystallization, John Wiley & Sons ISBN: 3527604359, page 107 (2006)Google Scholar
  19. Holland-Moritz, D., Yang, F., Kordel, T., Klein, S., Kargl, F., Gegner, J., Hansen, T., Bernarcik, J., Kaban, I., Shuleshova, O., Mattern, N., Meyer, A.: Does an icosahedral short-range order prevail in glass-forming Zr-Cu melts? Europhys. Lett. 100, 56002 (2012)CrossRefGoogle Scholar
  20. Ishikawa, T., Paradis, P.-F., Itami, T., Yoda, S.: Non-contact thermophysical property measurements of refractory metals using an electrostatic levitator. Meas. Sci. Technol. 16, 443 (2005)CrossRefGoogle Scholar
  21. Jiang, H., Zhao, J.: Continuous solidification of immiscible alloys and microstructure control. Microgravity Sci. Technol. 30, 747–760 (2018)CrossRefGoogle Scholar
  22. Keene, B.J.: Review of data for the surface tension of pure metals. Int. Mater. Rev. 38, 157–192 (1993)CrossRefGoogle Scholar
  23. Krasovskyy, V.P., Naidich, Y.V., Krasovskaya, N.A.: Surface tension and density of copper-zirconium alloys in contact with fluoride refractories. J. Mater. Sci. 40, 2367–2369 (2005)CrossRefGoogle Scholar
  24. Lamb, H.: Hydrodynamics, Cambridge University Press, Cambridge ISBN: 0 521 05515 6, p. 450 (1975)Google Scholar
  25. Lee, C.P.: Viscous damping of the oscillations of a rotating simple drop. Phys. Fluids. 28, 3187–3188 (1986)CrossRefGoogle Scholar
  26. Liu, J.-L., Jin, T., Luo, X.-H., Feng, S.-B., Zhao, J.-Z.: Effects of solidification conditions on the crystal selection behavior of an Al Base alloy during directional solidification. Microgravity Sci. Technol. 28, 109–113 (2016)CrossRefGoogle Scholar
  27. Mashayek, F., Ashgriz, N.: Nonlinear oscillations of drops with internal circulation. Phys. Fluids. 10, 1071–1082 (1998)CrossRefGoogle Scholar
  28. Mauro, N.A., Kelton, K.F.: A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011)CrossRefGoogle Scholar
  29. Mauro, N.A., Blodgett, M., Johnson, M.L., Vogt, A.J., Kelton, K.F.: A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014)CrossRefGoogle Scholar
  30. Meyer, H., van der Veen, M.: The shape of a rotating fluid drop. Opleiding wiskunde voor de industrie Eindhoven: student report, p. 8901. Technische Universiteit Eindhoven, Eindhoven (1989)Google Scholar
  31. Mirsandi, H., Yamamoto, T., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: A numerical study on the growth process of InGaSb crystals under microgravity with interfacial kinetics. Microgravity Science and Technology. 27, 313–320 (2015)CrossRefGoogle Scholar
  32. Novakovic, R., Muolo, M.L., Passerone, A.: Bulk and surface properties of liquid X-Zr (X= Ag, Cu) compound forming alloys. Surf. Sci. 549, 281–293 (2004)CrossRefGoogle Scholar
  33. Paradis, P.-F., Ishikawa, T., Yoda, S.: Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int. J. Thermophys. 23, 825–842 (2002)CrossRefGoogle Scholar
  34. Rayleigh, L.: On the capillary phenomena of jets. Proc. Royal. Soc. 29, 71–97 (1879)CrossRefGoogle Scholar
  35. Reid, W.H.: The oscillations of a viscous liquid drop. Q. Appl. Math. 18, 86–89 (1960)MathSciNetCrossRefGoogle Scholar
  36. Rhim, W.-K., Ohsaka, K., Paradis, P.-F., Spjut, R.E.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796–2801 (1999)CrossRefGoogle Scholar
  37. Schmitz, J., Brillo, J., Egry, I., Schmid-Fetzer, R.: Surface tension of liquid Al-cu binary alloys. Int. J. Mat. Res. 100, 1529–1535 (2009)CrossRefGoogle Scholar
  38. Schneider, S., Egry, I., Wunderlich, R., Willnecker, R., Pütz, M.: Evaluation of Thermophysical data from electromagnetic levitation experiments with digital image processing, proceeding of third international symposium on physical science in space 2008. J. Jpn. Soc. Microgravity Appl. 25 (2008)Google Scholar
  39. Tamaru, H., Koyama, C., Saruwatari, H., Nakamura, Y., Ishikawa, T., Takada, T.: Status of the electrostatic levitation furnace (ELF) in the ISS-KIBO. Microgravity Science and Technology. 30, 643–651 (2018)CrossRefGoogle Scholar
  40. Trinh, E.H.: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56, 2059 (1985)CrossRefGoogle Scholar
  41. Tsamopoulos, J.A., Brown, R.A.: Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537 (1983)CrossRefGoogle Scholar
  42. Watanabe, T.: Nonlinear oscillations and rotations of a liquid droplet. Int J Geol. 1, 5–13 (2010)Google Scholar
  43. Weber, J.K.R., Hampton, D.S., Merkley, D.R., Rey, C.A., Zatarski, M.M., Nordine, P.C.: Aero-acoustic levitation: a method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456 (1994)CrossRefGoogle Scholar
  44. Wunderlich, R. K., Mohr, M.: Complex oscillation patterns and non-linear fluid flow effects in the evaluation of the surface oscillation damping time constant in the oscillating drop method, High Temperatures-High Pressures (2018), submitted Google Scholar
  45. Xiao, X., Hyers, R.W., Wunderlich, R.K., Fecht, H.-J., Matson, D.M.: Deformation induced frequency shifts of oscillating droplets during molten metal surface tension measurement. Appl. Phys. Lett. 113, 011903 (2018)CrossRefGoogle Scholar
  46. Zhang, H., Zhong, C., Douglas, J.F., Wang, X., Cao, Q., Zhang, D., Jiang, J.-Z.: Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. J. Chem. Phys. 142, 164506 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Functional NanosystemsUniversity of UlmUlmGermany
  2. 2.Otto-Schott-Institut für MaterialforschungFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Department of Physics and Institute of Materials Science and EngineeringWashington University in St. LouisSt. LouisUSA
  4. 4.International Center for New-Structured Materials, State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations