Advertisement

Comparison Between the FLUIDICS Experiment and Direct Numerical Simulations of Fluid Sloshing in Spherical Tanks Under Microgravity Conditions

  • Alexis DalmonEmail author
  • Mathieu Lepilliez
  • Sébastien Tanguy
  • Romain Alis
  • Elena R. Popescu
  • Rémi Roumiguié
  • Thomas Miquel
  • Barbara Busset
  • Henri Bavestrello
  • Jean Mignot
Original Article
  • 14 Downloads

Abstract

The fluids behaviour within a spherical tank under microgravity conditions is investigated through a comparison between the original data from the FLUIDICS experiment carried out in the ISS and Direct Numerical Simulations for two-phase flows. The study case consists in the rotation of a spherical tank around a fixed axis. The tank is filled with a liquid with physical properties similar to those of liquid propellants and gases used in the space industry. Two tanks with different filling ratios have been tested in space. Cameras and sensors allow extracting the fluids dynamics and the temporal evolution of the force and torque exerted by the fluids on the tank wall. Several manoeuvres corresponding to different angular velocities and angular accelerations are submitted on both tanks. The velocity profile is divided into four phases: from zero, the angular velocity around the vertical axis increases linearly until it reaches the required constant value for which the fluids stabilise in the second phase, then the angular velocity decreases until it recovers zero. Numerical simulations are computed with the home-made code DIVA which is based on the Level Set method coupled with the Ghost Fluid Method. The force in the radial direction gives the value of the centrifugal force during the constant angular velocity phase. The average centrifugal force is well predicted by the simulations, the comparison with the experimental data exhibits errors lower than 3% for the half-filled tank. Considering the vertical torque, the effect of the Euler acceleration is clearly visible through the important peaks of opposite sign observed during the acceleration and the deceleration phases. Moreover, the oscillations of the gas bubble during the second phase can be observed from the torque evolution. Their magnitude decreases throughout time until the steady state is reached. The measured and predicted temporal evolutions match together until the magnitude of the oscillations reaches the noise level of the data. The bubble oscillations are much more damped for the tank containing a larger amount of liquid (75%). The frequency of these oscillations are investigated applying the Fourier transform of the torque signals and by looking at the videos taken during the experiment. Similar oscillation frequencies are observed with the experimental setup and the numerical simulations, even for the manoeuvre with the lower Bond numbers. We verify that the oscillation frequency increases with the angular velocity. Finally, the comparison exhibits that the numerical simulations provide an accurate prediction of the fluids behaviours in microgravity conditions for this range of Bond numbers.

Keywords

Fluid sloshing Microgravity experiment Direct Numerical Simulation 

Notes

Acknowledgements

The authors wish to thank Airbus Defence & Space and CNES (French national space agency) for their funding and especially for the financial support of the PhD study of Alexis Dalmon. The successful collaboration between Airbus Defence & Space and CNES has provided original data by sending in the ISS the FLUIDICS experiment which achievement has represented a great challenge.

References

  1. Abramson, N.H.: The dynamic behaviour of liquids in moving containers, with applications to space vehicle technology. Tech. rep., NASA SP 106 (1967)Google Scholar
  2. Aslam, T.: A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. 193, 349–355 (2004)MathSciNetCrossRefGoogle Scholar
  3. Chorin, A.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)CrossRefGoogle Scholar
  4. Dalmon, A., Lepilliez, M., Tanguy, S., Pedrono, A., Busset, B., Bavestrello, H., Mignot, J.: Direct numerical simulation of a bubble motion in a spherical tank under external forces and microgravity conditions. J. Fluid Mech. 849, 467–497 (2018)MathSciNetCrossRefGoogle Scholar
  5. Dendy, J.: Black box multigrid. J. Comput. Phys. 48, 366–386 (1982)MathSciNetCrossRefGoogle Scholar
  6. Dodge, F.T.: The new dynamic behaviour of liquids in moving containers. Tech Rep., Southwest Reaserch Institute, Texas (2000)Google Scholar
  7. Ebrahimian, M., Noorian, M.A., Haddadpour, H.: Free vibration sloshing analysis in axisymmetric baffled containers under low-gravity condition. Microgravity Sci. Technol. 27, 97–106 (2015)CrossRefGoogle Scholar
  8. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)MathSciNetCrossRefGoogle Scholar
  9. Fernandez, J., Sanchez, P.S., Tinao, I., Porter, J., Ezquerro, J.M.: The cfvib experiment: control of fluid in microgravity with vibrations. Microgravity Sci. Technol. 29, 351–364 (2017)CrossRefGoogle Scholar
  10. Gibou, F., Fedkiw, R., Cheng, L.T., Kang, M.: A second-order-accurate symmetric discretization of the poisson equation on irregular domains. J. Comput. Phys. 176, 205–227 (2002)MathSciNetCrossRefGoogle Scholar
  11. Gibou, F., Cheng, L.T., Nguyen, D., Banerjee, S.: A level set based sharp interface method for the multiphase incompressible navier-stokes equations with phase change. J. Comput. Phys. 222, 536–555 (2007)MathSciNetCrossRefGoogle Scholar
  12. Huber, G., Tanguy, S., Bera, J., Gilles, B.: A time splitting projection scheme for compressible two-phase flows. application to the interaction of bubbles with ultrasound waves. J. Comput. Phys. 302, 439–468 (2015)MathSciNetCrossRefGoogle Scholar
  13. Huber, G., Tanguy, S., Sagan, M., Colin, C.: Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number. Int. J. Heat Mass Transfer. 113, 662–682 (2017)CrossRefGoogle Scholar
  14. Lalanne, B., Chebel, N.A., Vejrazka, J., Tanguy, S., Masbernat, O., Risso, F.: Non-linear shape oscillations of rising drops and bubbles: experiments and simulations. Phys. Fluids 27(123305) (2015)Google Scholar
  15. Lepilliez, M.: Simulation numérique des ballotements d’ergols dans les réservoirs de satellites en microgravité et à faible nombre de reynolds. PhD thesis, Université Toulouse 3 Paul Sabatier (2015)Google Scholar
  16. Lepilliez, M., Popescu, E.R., Gibou, F., Tanguy, S.: On two-phase flow solvers in irregular domains with contact line. J. Comput. Phys. 321, 1217–1251 (2016)MathSciNetCrossRefGoogle Scholar
  17. Li, J.C., Lin, H., Zhao, J.F., Li, K., Hu, W.R.: Dynamic behaviors of liquid in papartial filled tank in short-term microgravity. Microgravity Sci. Technol. 30(6), 849–856 (2018)CrossRefGoogle Scholar
  18. Liu, D., Lin, P.: A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227, 3921–3939 (2008)CrossRefGoogle Scholar
  19. Liu, X.D., Fedkiw, R., Kang, M.: A boundary condition capturing method for poisson’s equation on irregular domain. J. Comput. Phys. 160, 151–178 (2000)MathSciNetCrossRefGoogle Scholar
  20. MacLachlan, S., Tang, J., Vuik, C.: Fast and robust solvers for pressure-correction in bubbly flow problems. J. Comput. Phys. 227(23), 9742–9761 (2008)MathSciNetCrossRefGoogle Scholar
  21. Mignot, J., Pierre, R., Berhanu, M., Busset, B., Roumiguié, R, Bavestrello, H., Bonfanti, S., Miquel, T., Marot, L.O., Llodra-Perez, A.: Fluid dynamic in space experiment. In: 68th international astronautical congress (IAC), Adelaide, Australia (IAC-17-A2.6.2) (2017)Google Scholar
  22. Ng, Y., Min, C., Gibou, F.: An efficient fluid-solid coupling algorithm for single-phase flows. J Comput Phys 228, 8807–8829 (2009)MathSciNetCrossRefGoogle Scholar
  23. Nguyen, D.Q., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71–98 (2001)MathSciNetCrossRefGoogle Scholar
  24. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton–jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRefGoogle Scholar
  25. Papac, J., Gibou, F., Ratsch, C.: Efficient symmetric discretization for the poisson, heat and stefan-type problems with robin boundary conditions. J. Comput. Phys. 229, 875–889 (2010)MathSciNetCrossRefGoogle Scholar
  26. Rueda Villegas, L., Alis, R., Lepilliez, M., Tanguy, S.: A ghost fluid/level set method for boiling flows and liquid evaporation: application to the leidenfrost effect. J. Comput. Phys. 316, 789–813 (2016)MathSciNetCrossRefGoogle Scholar
  27. Rueda Villegas, L., Tanguy, S., Castanet, G., Caballina, O., Lemoine, F.: Direct numerical simulation of the impact of a droplet onto a hot surface above the leidenfrost temperature. Int. J. Heat Mass Trans. 104, 1090–1109 (2017)CrossRefGoogle Scholar
  28. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)CrossRefGoogle Scholar
  29. Sussman, M., Smith, K., Hussaini, M., Ohta, M., Zhi-Wei, R.: A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 221, 469–505 (2007)MathSciNetCrossRefGoogle Scholar
  30. Tang, Y., Yue, B.: Simulation of large-amplitude three dimensional liquid sloshing in spherical tanks. AIAA J. 55(6), 2052–2059 (2017)CrossRefGoogle Scholar
  31. Tang, Y., Yue, B., Yan, Y.: Improved method for implementing contact angle condition in simulation of liquid sloshing under microgravity. Int. J. Numer. Meth. Fluids 1–20 (2018)Google Scholar
  32. Tanguy, S., Berlemont, A.: Application of a level set method for simulation of droplet collisions. Int. J. Multiph. Flow 31, 1015–1035 (2005)CrossRefGoogle Scholar
  33. Tanguy, S., Menard, T., Berlemont, A.: A level set method for vaporizing two-phase flows. J. Comput. Phys. 221, 837–853 (2007)MathSciNetCrossRefGoogle Scholar
  34. Tanguy, S., Sagan, M., Lalanne, B., Couderc, F., Colin, C.: Benchmarks and numerical methods for the simulation of boiling flows. J. Comput. Phys. 264, 1–22 (2014)CrossRefGoogle Scholar
  35. Urbano, A., Tanguy, S., Huber, G., Colin, C.: Direct numerical simulation of nucleate boiling in micro-layer regime. Int. J. Heat Mass Trans. 123, 1128–1137 (2018)CrossRefGoogle Scholar
  36. Veldman, A., Gerrits, J., Luppes, R., Helder, J., Vreeburg, J.: The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 224, 82–99 (2007)MathSciNetCrossRefGoogle Scholar
  37. Yue, B.: Large-scale amplitude liquid sloshing in container under pitching excitation. Chin. Sci. Bull. 53(24), 3816–3823 (2008)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alexis Dalmon
    • 1
    Email author
  • Mathieu Lepilliez
    • 2
  • Sébastien Tanguy
    • 1
  • Romain Alis
    • 1
  • Elena R. Popescu
    • 1
  • Rémi Roumiguié
    • 2
  • Thomas Miquel
    • 2
  • Barbara Busset
    • 2
  • Henri Bavestrello
    • 2
  • Jean Mignot
    • 3
  1. 1.Institut de Mécanique des Fluides de Toulouse, IMFTUniversité de Toulouse, CNRSToulouseFrance
  2. 2.Airbus Defence & SpaceToulouse Cedex 4France
  3. 3.Centre National d’Études SpatialesToulouse Cedex 9France

Personalised recommendations