Modelling of Unidirectional Reciprocating Sliding Contacts of Nanoscale Textured Surfaces Considering the Impact Effects in Microgravity Environment

  • Ruiting TongEmail author
  • Geng Liu
Original Article


In space environment, the adhesion effects can cause a high adhesion component of a friction force, and the impact effects caused by the microgravity can induce a high ploughing component, so the friction force is higher than the ground environment. Nanoscale textures affect the adhesion behaviors by reducing contact areas, and they also vary the shear strength of the interface, which are beneficial to the friction reduction. Considering the impact effects, the motion of a clearance joint is simplified as a unidirectional reciprocating sliding contact, and a multiscale model is employed to investigate the friction and wear characteristics between a rigid cylindrical tip and nanoscale textured surfaces. The effects of texture shapes on running-in stages, average friction forces and wear characteristics are investigated. The results show that the isosceles trapezoid textured surface (surface II) and the surface with right-angled trapezoid textures on the right side (surface III) can come to steady states for different sliding modes. Surface II presents the lowest total average friction force to show its potential to reduce friction forces. The worn atoms are the least for surface III, and surface III can be used to improve the wear behaviors. The impact effects make that the unidirectional reciprocating sliding contacts show higher total average friction forces than reciprocating sliding contacts. This work could contribute to designing textured surfaces, reducing friction and wear in unidirectional reciprocating sliding contacts under impact effects in microgravity environment, and help to prolong the life of components in the spacecraft.


Impact effects Textured surface Unidirectional reciprocating sliding contact Friction and wear Microgravity 



The authors would like to thank the National Natural Science Foundation of China (51675429), Key Project of National Natural Science Foundation of China (51535009), China Scholarship Council (No. 201706295034), the Fundamental Research Funds for the Central Universities (31020190503004), and the 111 Project (B13044) for their financial support.


  1. Agrawal, P.M., Rice, B.M., Thompson, D.L.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515(1), 21–35 (2002)CrossRefGoogle Scholar
  2. Bai, L.C., Srikanth, N., Korznikova, E.A., Baimova, J.A., Dmitriev, S.V., Zhou, K.: Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear. 372–373, 12–20 (2017)CrossRefGoogle Scholar
  3. Bhushan, B., Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46(11), 3793–3804 (1998)CrossRefGoogle Scholar
  4. Chen, S.C., Qian, G.C., Yang, L.: Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior. Surf. Coat. Tech. 362, 105–112 (2019)CrossRefGoogle Scholar
  5. Cheng, Y., Zhu, P., Li, R.: The influence of vertical vibration on nanoscale friction: a molecular dynamics simulation study. Crystals. 8(3), 129 (2018)CrossRefGoogle Scholar
  6. Cho, D.-H., Jung, J., Kim, C., Lee, J., Oh, S.-D., Kim, K.-S., Lee, C.: Comparison of frictional properties of CVD-grown MoS2 and graphene films under dry sliding conditions. Nanomaterials. 9(2), 293 (2019)CrossRefGoogle Scholar
  7. Christian, J., Gwénael, R.: Molecule concept nanocars: chassis, wheel, and motors? ACS Nano. 7(1), 11–14 (2013)CrossRefGoogle Scholar
  8. Craciun, A.D., Gallani, J.L., Rastei, M.V.: Stochastic stick-slip nanoscale friction on oxide surfaces. Nanotechnology. 27(5), 055402 (2016)CrossRefGoogle Scholar
  9. Dai, H.F., Chen, G.Y., Li, S.B., Fang, Q.H., Hu, B.: Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation. RSC Adv. 7, 15596–15612 (2017)CrossRefGoogle Scholar
  10. Doll, J.D., Mcdowell, H.K.: Theoretical studies of surface diffusion: self-diffusion in the FCC (111) system. J. Chem. Phys. 77(1), 479–483 (1982)CrossRefGoogle Scholar
  11. Dong, Y.L., Li, Q.Y., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A. 31(3), 030801 (2013)CrossRefGoogle Scholar
  12. Erkaya, S.: Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network. J. Mech. Sci. Technol. 26(5), 1419–1430 (2012)CrossRefGoogle Scholar
  13. Etsion, I.: State of the art in laser surface texturing. ASME J. Tribol. 127(1), 248–253 (2005)CrossRefGoogle Scholar
  14. Foster, C.L., Tinker, M.L., Nurre, G.S., Till, W.A.: The solar array-induced disturbance of the Hubble space telescope pointing system. NASA Technical Paper 3556 (1995)Google Scholar
  15. Gao, H., Dong, Y., Martini, A.: Atomistic study of lateral contact stiffness in friction force microscopy. Tribol. Int. 74, 57–61 (2014)CrossRefGoogle Scholar
  16. Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear. 254(9), 859–862 (2003)CrossRefGoogle Scholar
  17. Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B. 46(15), 9700–9708 (1992)CrossRefGoogle Scholar
  18. Jeon, S., Thundat, T., Braiman, Y.: Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88(21), 5038 (2006)CrossRefGoogle Scholar
  19. Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30(4), 399–409 (2018)CrossRefGoogle Scholar
  20. Kim, H.-J., Kim, D.-E.: Molecular dynamics simulation of atomic-scale frictional behavior of corrugated nano-structured surfaces. Nanoscale. 4(13), 3937–3944 (2012)CrossRefGoogle Scholar
  21. Kumar, A., Staedler, T., Jiang, X.: Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime. Beilstein J. Nanotechnol. 4, 66–71 (2013)CrossRefGoogle Scholar
  22. Li, J., Fang, Q.H., Zhang, L.C., Liu, Y.W.: The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation. Comput. Mater. Sci. 98, 252–262 (2015)CrossRefGoogle Scholar
  23. Liu, X.Z., Ye, Z.J., Dong, Y.L., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114(14), 146102 (2015)CrossRefGoogle Scholar
  24. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Mark, O.R.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E. 74(4), 046710 (2006)CrossRefGoogle Scholar
  25. Ma, M., Sokolov, I.M., Wang, W., Filippov, A.E., Zheng, Q., Urbakh, M.: Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X. 5(3), 031020 (2015)Google Scholar
  26. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rew. Lett. 59(17), 1942–1945 (1987)CrossRefGoogle Scholar
  27. Meng, F.M., Zhou, R., Davis, T., Cao, J., Wang, Q.J., Hua, D., Liu, J.: Study on effect of dimples on friction of parallel surfaces under different sliding conditions. Appl. Sur. Sci. 256(9), 2863–2875 (2010)CrossRefGoogle Scholar
  28. Mitchell, N., Eljach, C., Lodge, B., Sharp, J.L., DesJardins, J.D., Kennedy, M.S.: Single and reciprocal friction testing of micropatterned surfaces for orthopedic device design. J. Mech. Behav. Biomed. Mater. 7, 106–115 (2012)CrossRefGoogle Scholar
  29. Moore, D.F.: Principles and applications of tribology. Pergamon Press, Oxford (1975)Google Scholar
  30. Perry, M.D., Harrison, J.A.: Friction between diamond surfaces in the presence of small third-body molecules. J. Phys. Chem. B. 101(8), 1364–1373 (1997)CrossRefGoogle Scholar
  31. Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30(1–2), 1–10 (2018)CrossRefGoogle Scholar
  32. Quignon, B., Pilkington, G.A., Thormann, E., Claesson, P.M., Ashfold, M.N.R., Mattia, D., Leese, H., Davis, S.A., Briscoe, W.H.: Sustained frictional instabilities on nanodomed surfaces: stick-slip amplitude coefficient. ACS Nano. 7(12), 10850–10862 (2013)CrossRefGoogle Scholar
  33. Schipitsyn, V.D., Kozlov, V.G.: Oscillatory and steady dynamics of a cylindrical body near the border of vibrating cavity filled with liquid. Microgravity Sci. Technol. 30(1–2), 103–1112 (2018)CrossRefGoogle Scholar
  34. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science. 313(5784), 207–210 (2006)CrossRefGoogle Scholar
  35. Sun, X.Y., Qi, Y.Z., Ouyang, W., Feng, X.Q., Li, Q.Y.: Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations. Acta Mech. Sinica. 32(4), 604–610 (2016)zbMATHCrossRefGoogle Scholar
  36. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)CrossRefGoogle Scholar
  37. Tambe, N.S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology. 16(10), 2309–2324 (2005)CrossRefGoogle Scholar
  38. Tong, R.T., Liu, G.: Nanoscale reciprocating sliding contacts of textured surfaces: influence of structure parameters and indentation depth. Chin. J. Mech. Eng. 31, 62 (2018)CrossRefGoogle Scholar
  39. Tong, R.T., Liu, G.: Friction property of impact sliding contact under vacuum and microgravity. Microgravity Sci. Technol. 31(1), 85–94 (2019)CrossRefGoogle Scholar
  40. Tong, R.T., Liu, G., Liu, T.X.: Multiscale analysis on two dimensional nanoscale sliding contacts of textured surfaces. ASME J. Tribol., 133. (4), 041401(1–13)), (2011)Google Scholar
  41. Tong, R.T., Han, B., Quan, Z.F., Liu, G.: Molecular dynamics simulation of friction and heat properties of nano-texture gold film in space environment. Surf. Coat. Tech. 358, 775–784 (2019)CrossRefGoogle Scholar
  42. Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102(13), 136102 (2009)CrossRefGoogle Scholar
  43. Wang, W.H., Peng, Q., Dai, Y.Q., Qian, Z.F., Liu, S.: Distinctive nanofriction of graphene coated copper foil. Comput. Mater. Sci. 117, 406–411 (2016)CrossRefGoogle Scholar
  44. Wyder, U., Baratoff, A., Meyer, E.: Interpretation of atomic friction experiments based on atomistic simulations. J. Vac. Sci. Technol. B. 25(5), 1547–1553 (2007)CrossRefGoogle Scholar
  45. Xing, Y.Q., Deng, J.X., Li, S.P., Yue, H.Z., Meng, R., Gao, P.: Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting. Wear. 318(1–2), 12–26 (2014)CrossRefGoogle Scholar
  46. Yang, J., Komvopoulos, K.: A molecular dynamics analysis of surface interference and tip shape and size effects on atomic-scale friction. ASME J. Tribol. 127(3), 513–521 (2005)CrossRefGoogle Scholar
  47. Yang, P., Zhang, H.Z.: Numerical analysis on meshing friction characteristics of nano-gear train. Tribol. Int. 41(6), 535–541 (2008)CrossRefGoogle Scholar
  48. Yang, L., Guo, Y.J., Zhang, Q.: Frictional behavior of strained multilayer graphene: tuning the atomic scale contact area. Diam. Relat. Mater. 73, 273–277 (2017)CrossRefGoogle Scholar
  49. Yoon, H.M., Jung, Y.M., Jun, S.C., Kondaraju, S., Lee, J.S.: Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion. Nanoscale. 7(14), 6295–6303 (2015)CrossRefGoogle Scholar
  50. Zhang, H.S., Komvopoulos, K.: Scale-dependent nanomechanical behavior and anisotropic friction of nanotextured silicon surfaces. J. Mater. Res. 24(10), 3038–3043 (2009)CrossRefGoogle Scholar
  51. Zhang, L.C., Johnson, K.L., Cheong, W.C.D.: A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol. Lett. 10(1–2), 23–28 (2001)CrossRefGoogle Scholar
  52. Zhang, Y.K., Dong, W.B., Liu, W., Li, Z.F., Lv, S.M., Sang, X.R., Yang, Y.: Verification of the microgravity active vibration isolation system based on parabolic flight. Microgravity Sci. Technol. 29(6), 415–426 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Shaanxi Engineering Laboratory for Transmissions and ControlsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations