Antisolvent Crystallization of L-histidine in Micro-Channel Reactor under Microgravity

  • Yan Zhang
  • Jingcai Cheng
  • Yair Glick
  • Guy Samburski
  • Jie ChenEmail author
  • Chao YangEmail author
Original Article​
Part of the following topical collections:
  1. Multiphase Fluid Dynamics in Microgravity


The influence of gravity (including 0 G, 0.16 G, 0.38 G, 1 G and 1.8 G) on the antisolvent crystallization of L-histidine was investigated in a self-designed micro-channel crystallizer on a zero-G flight, which was successfully launched on June 13th, 2018. The stable form of L-histidine was obtained under microgravity, while only the metastable form can be observed in the ground experiments with the same inlet conditions. The possible reason is the extremely ordered flow field of the system in microgravity environment. A large amount of small particles aggregated at 1.8 G due to the enhanced micromixing, which favors nucleation. Bigger particles crystalized at Moon gravity (0.16 G) without the excessive consumption of the supersaturation by explosive nucleation and with moderate convection of the system. It is concluded that both nucleation and crystal growth were influenced by the micromixing status in the system due to the altered gravity extent.


L-histidine Microgravity Antisolvent crystallization Polymorphism Micro-channel crystallizer 



The authors thank Spacety Co., Ltd. (in China) for the support of microgravity experiments. This work is founded by National Natural Science Foundation of China (Grants 21878294, 21776284, 21606234), Major National Scientific Instrument Development Project (21427814), Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-JSC030) and Instrument Developing Project of Chinese Academy of Sciences (YZ201641).

Supplementary material

12217_2019_9728_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)
12217_2019_9728_MOESM2_ESM.mpg (24.6 mb)
ESM 2 (MPG 25214 kb)
12217_2019_9728_MOESM3_ESM.mpg (12.6 mb)
ESM 3 (MPG 12856 kb)


  1. Chieng, N., Rades, T., Aaltonen, J.: An overview of recent studies on the analysis of pharmaceutical polymorphs. J. Pharm. Biomed. Anal. 55, 618–644 (2011)CrossRefGoogle Scholar
  2. Cruz-Cabeza, A.J., Reutzel-Edensb, S.M., Bernstein, J.: Facts and fictions about polymorphism. Chem. Soc. Rev. 44, 8619–8635 (2015)CrossRefGoogle Scholar
  3. Dushin, V.R., Nikitin, V.F., Smirnov, N.N., Skryleva, E.I., Tyurenkova, V.V.: Microgravity investigation of capillary driven imbibition. Microgravity Sci. Technol. 30, 393–398 (2018)CrossRefGoogle Scholar
  4. Evrard, C., Maes, D., Zegers, I., Declercq, J.P., Vanhee, C., Martial, J., Wyns, L., Weerdt, C.V.D.: TIM crystals grown by capillary Counterdiffusion: statistical evidence of quality improvement in microgravity. Cryst. Growth Des. 7, 2161–2166 (2007)CrossRefGoogle Scholar
  5. Higashi, K., Ueda, K., Moribe, K.: Recent Progress of structural study of polymorphic pharmaceutical drugs. Adv. Drug Deliver. Rev. 117, 71–85 (2017)CrossRefGoogle Scholar
  6. Horosanskaia, E., Seidel-Morgenstern, A., Lorenz, H.: Investigation of drug polymorphism: case of artemisinin. Thermochim. Acta. 578, 74–81 (2014)CrossRefGoogle Scholar
  7. Huang, Y., Zhu, C., Xiang, X.: Granular flow under microgravity: a preliminary review. Microgravity Sci. Technol. 26, 131–138 (2014)CrossRefGoogle Scholar
  8. Inaka, K., Takahashi, S., Aritake, K., Tsurumura, T., Furubayashi, N., Yan, B., Hirota, E., Sano, S., Sato, M., Kobayashi, T., Yoshimura, Y., Tanaka, H., Urade, Y.: High-quality protein crystal growth of mouse Lipocalin-type prostaglandin D synthase in microgravity. Cryst. Growth Des. 11, 2107–2111 (2011)Google Scholar
  9. Judge, R.A., Snell, E.H., Woerd, M.J.: Extracting trends from two decades of microgravity macromolecular crystallization history. Acta. Cryst. D61, 763–771 (2005)Google Scholar
  10. Kitamura, M.: Polymorphism in the crystallization of L-glutamic acid. J. Cryst. Growth. 96, 541–546 (1989)CrossRefGoogle Scholar
  11. Kitamura, M., Furukawa, H., Asaeda, M.: Solvent effect of ethanol on crystallization and growth process of L-histidine polymorphs. J. Cryst. Growth. 41, 193–199 (1994)CrossRefGoogle Scholar
  12. Kostarev, K., Denisova, M., Shmyrov, A.: Effect of Marangoni convection on surfactant transfer between the drop connected to the reservoir and surrounding liquid. Microgravity Sci. Technol. 30, 353–359 (2018)CrossRefGoogle Scholar
  13. Kundrot, C.E., Judge, R.A., Pusey, M.L., Snell, E.H.: Microgravity and macromolecular crystallography. Cryst. Growth Des. 1, 87–99 (2001)Google Scholar
  14. Lee, A.Y., Erdemir, D., Myerson, A.S.: Crystal polymorphism in chemical process development. Annu. Rev. Chem. Biomol. Eng. 2, 259–280 (2011)Google Scholar
  15. Liang, K., White, G., Wilkinson, D., Ford, L.J., Roberts, K.J., Wood, W.M.L.: An examination into the effect of stirrer material and agitation rate on the nucleation of L-glutamic acid batch crystallized from supersaturated aqueous solutions. Cryst. Growth Des. 4, 1039–1044 (2004)Google Scholar
  16. Liu, J., Jin, T., Luo, X., Feng, S., Zhao, J.: Effects of solidification conditions on the crystal selection behavior of an Al Base alloy during directional solidification. Microgravity Sci. Technol. 28, 109–113 (2016)CrossRefGoogle Scholar
  17. Liu, Y., Wang, Y., Liu, Y., Xu, S., Chen, M., Du, S., Gong, J.: Solubility of L-histidine in different aqueous binary solvent mixtures from 283.15 K to 318.15 K with experimental measurement and thermodynamic modelling. J. Chem. Thermodynamics. 105, 1–14 (2017)CrossRefGoogle Scholar
  18. Mangin, D., Puel, F., Veesler, S.: Polymorphism in processes of crystallization in solution: a practical review. Org. Process. Res. Dev. 13, 1241–1253 (2009)CrossRefGoogle Scholar
  19. Myerson, A.S.: Handbook of Industrial Crystallization. Butterworth–Heinemann, Oxford (2002)Google Scholar
  20. Park, S., Kim, W.S.: Influence of fluid motions on polymorphic crystallization of L-histidine: Taylor vortex flow and turbulent Eddy flow. Cryst. Growth Des. 18, 710–722 (2018)CrossRefGoogle Scholar
  21. Punmalee, N., Wantha, L., Flood, A.E.: Antisolvent crystallization of polymorphs of L-histidine. Chem. Eng. Technol. 41, 1132–1138 (2018)Google Scholar
  22. Roelands, C.P.M., Jiang, S., Kitamura, M., Horst, J.H., Kramer, H.M., Jansens, P.J.: Antisolvent crystallization of the polymorphs of L-histidine as a function of supersaturation ratio and of solvent composition. Cryst. Growth Des. 6, 955–963 (2006)CrossRefGoogle Scholar
  23. Snell, E.H., Helliwell, J.R.: Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799–853 (2005)Google Scholar
  24. Suzuki, Y., Tsukamoto, K., Yoshizaki, I., Miura, H., Fujiwara, T.: First direct observation of impurity effects on the growth rate of tetragonal lysozyme crystals under microgravity as measured by interferometry. Cryst. Growth Des. 15, 4787–4794 (2015)CrossRefGoogle Scholar
  25. Valota, L., Kurwitz, C., Shephard, A., Best, F.: Microgravity flow regime data and analysis. Int. J. Multiphas. Flow. 33, 1172–1185 (2007)CrossRefGoogle Scholar
  26. Wantha, L.: Determination of nucleation and growth mechanisms of the B polymorph of L-histidine by induction time measurement. Chem. Eng. Technol. 39, 1289–1294 (2016)CrossRefGoogle Scholar
  27. Wu, K., Wu, H., Dai, T., Liu, X., Chen, J.F., Le, Y.: Controlling nucleation and fabricating Nanoparticulate formulation of Sorafenib using a high-gravity rotating packed bed. Ind. Eng. Chem. Res. 57, 1903–1911 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.SpacePharma R&D Israel LtdHerzliyaIsrael

Personalised recommendations