Advertisement

AtmoFlow - Investigation of Atmospheric-Like Fluid Flows Under Microgravity Conditions

  • F. ZaussingerEmail author
  • P. Canfield
  • A. Froitzheim
  • V. Travnikov
  • P. Haun
  • M. Meier
  • A. Meyer
  • P. Heintzmann
  • T. Driebe
  • Ch. Egbers
Original Article
  • 37 Downloads
Part of the following topical collections:
  1. Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Abstract

The main objective of the AtmoFlow experiment is the investigation of convective flows in the spherical gap geometry. Gaining fundamental knowledge on the origin and behavior of flow phenomena such as global cells and planetary waves is interesting not only from a meteorological perspective. Understanding the interaction between atmospheric circulation and a planet’s climate, be it Earth, Mars, Jupiter, or a distant exoplanet, contributes to various fields of research such as astrophysics, geophysics, fluid physics, and climatology. AtmoFlow aims to observe flows in a thin spherical gap that are subjected to a central force-field. The Earth’s own gravitational field interferes with a simulated central force-field with the given parameters of the model which makes microgravity conditions of \(\mathrm {g}<10^{-3} \mathrm {g}_{0}\) (e.g. on the ISS) necessary. Without losing its overall view on the complex physics, circulation in planetary atmospheres can be reduced to a simple model of a central gravitational field, the incoming and outgoing energy (e.g. radiation) and rotational effects. This strongly simplified assumption makes it possible to break some generic cases down to test models which can be investigated by laboratory experiments and numerical simulations. Varying rotational rates and temperature boundary conditions represent different types of planets. This is a very basic approach, but various open questions regarding local pattern formation or global planetary cells can be investigated with that setup. A concept has been defined for developing a payload that could be installed and utilized on-board the International Space Station (ISS). This concept is based on the microgravity experiment GeoFlow, which has been conducted successfully between 2008 and 2016 on the ISS. This paper addresses the scientific goals, the experimental setup, the concept for implementation of the AtmoFlow experiment on the ISS and first numerical results.

Keywords

Microgravity conditions Rotating convection Atmospheric flows Dielectrophoresis Dielectric heating 

Notes

Acknowledgments

The AtmoFlow project is funded by DLR Space Administration under contract numbers 50WP1709 and 50WP1809. The GeoFlow research has been funded by the ESA grants AO-99-049, by the DLR grants 50 WM 0122, 50 WM 0822, 50WM1644 and by the SOKRATES / ERASMUS- program LIA-ISTROF (CNRS-cooperation). Furthermore the authors thank the GeoFlow Topical Team (ESA 18950/05/NL/VJ) for intensive discussions. All simulations have been performed at the Northern German Network for High-Performance Computing (HLRN) and the Heraklit cluster (BTU Cottbus-Senftenberg).

Contents of this manuscript have been presented at the 69th International Astronautical Congress, 01–05 October 2018, Bremen, Germany, www.iafastro.org. We refer to the conference proceedings (Zaussinger et al. 2018a) and Canfield et al. (2018).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Beltrame, P., Egbers, C., Hollerbach, R.: The geoflow-experiment on {ISS} (part iii): Bifurcation analysis. Adv. Space Res. 32(2), 191–197 (2003).  https://doi.org/10.1016/S0273-1177(03)90250-X. http://www.sciencedirect.com/science/article/pii/S027311770390250X, gravitational Effects in Physico-Chemical ProcessesCrossRefGoogle Scholar
  2. Borcia, I.D., Harlander, U.: Inertial waves in a rotating annulus with inclined inner cylinder: comparing the spectrum of wave attractor frequency bands and the eigenspectrum in the limit of zero inclination. Theor. Comput. Fluid Dyn. 27(3), 397–413 (2013).  https://doi.org/10.1007/s00162-012-0278-6 CrossRefGoogle Scholar
  3. Bronowicki, P., Canfield, P., Grah, A., Dreyer, M.: Free surfaces in open capillary channels—parallel plates. Phys. Fluids 27(1) (2015)Google Scholar
  4. Busse, F.H., Carrigan, C.R.: Laboratory simulation of thermal convection in rotating planets and stars. Science 191(4222), 81–83 (1976).  https://doi.org/10.1126/science.191.4222.81. http://science.sciencemag.org/content/191/4222/81 CrossRefGoogle Scholar
  5. Canfield, P.: Stability of Free Surfaces in Single-Phase and Two-Phase Open Capillary Channel Flow in a Microgravity Environment. Cuvillier Verlag, Göttingen (2018)Google Scholar
  6. Canfield, P., Bronowicki, P., Chen, Y., Kiewidt, L., Grah, A., Klatte, J., Jenson, R., Blackmore, W., Weislogel, M., Dreyer, M.: The capillary channel flow experiments on the international space station: experiment set-up and first results. Exp. Fluids 54(5), 1519 (2013)CrossRefGoogle Scholar
  7. Canfield, P., Zaussinger, F., Egbers, C., Heintzmann, P.: AtmoFlow - simulating atmospheric flows on the international space station. Part I: experiment and ISS-implementation concept. In: 69Th IAC Conference Proceedings, International Astronautical Federation, Vol 18.A2.6.15-69 (2018)Google Scholar
  8. Castellanos, A.: Electrohydrodynamics, vol CISM courses and lectures-380. Springer-Verlag, Wien GmbH (1998)Google Scholar
  9. Chan, S.C., Nigam, S.: Residual diagnosis of diabatic heating from era-40 and ncep reanalyses: Intercomparisons with trmm. J. Climate 22(2), 414–428 (2009).  https://doi.org/10.1175/2008JCLI2417.1 CrossRefGoogle Scholar
  10. Christensen, U.R.: Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28(13), 2553–2556 (2001).  https://doi.org/10.1029/2000GL012643 CrossRefGoogle Scholar
  11. Conrath, M., Canfield, P., Bronowicki, P., Dreyer, M.E., Weislogel, M.M., Grah, A.: Capillary channel flow experiments aboard the international space station. Phys. Rev. E 88(6), 063,009 (2013)CrossRefGoogle Scholar
  12. Dietrich, W., Gastine, T., Wicht, J.: Reversal and amplification of zonal flows by boundary enforced thermal wind. Icarus 282, 380–392 (2017).  https://doi.org/10.1016/j.icarus.2016.09.013. http://www.sciencedirect.com/science/article/pii/S0019103516305759 CrossRefGoogle Scholar
  13. Dubois, F., Joannes, L., Dupont, O., Dewandel, J.L., Legros, J.C.: An integrated optical set-up for fluid-physics experiments under microgravity conditions. Meas. Sci. Technol. 10(10), 934 (1999). http://stacks.iop.org/0957-0233/10/i=10/a=314 CrossRefGoogle Scholar
  14. Egbers, C., Brasch, W., Sitte, B., Immohr, J., Schmidt, J.R.: Estimates on diagnostic methods for investigations of thermal convection between spherical shells in space. Meas. Sci. Technol. 10(10), 866–877 (1999).  https://doi.org/10.1088/0957-0233/10/10/306 CrossRefGoogle Scholar
  15. Egbers, C., Beyer, W., Bonhage, A., Hollerbach, R., Beltrame, P.: The GeoFlow-experiment on ISS (part I): Experimental preparation and design of laboratory testing hardware. Adv. Space Res. 32 (2), 171–180 (2003).  https://doi.org/10.1016/S0273-1177(03)90248-1. http://www.sciencedirect.com/science/article/pii/S0273117703902481, gravitational effects in physico-chemical processesCrossRefGoogle Scholar
  16. Evgenidis, S.P., Zacharias, K.A., Karapantsios, T.D., Kostoglou, M.: Effect of liquid properties on heat transfer from miniature heaters at different gravity conditions. Microgravity Sci. Technol. 23(2), 123–128 (2011).  https://doi.org/10.1007/s12217-010-9206-9 CrossRefGoogle Scholar
  17. Ezquerro Navarro, J.M., Fernández, JJ, Rodríguez, J, Laverón-Simavilla, A, Lapuerta, V.: Results and experiences from the execution of the geoflow experiments on the iss. Microgravity Sci. Technol. 27 (1), 61–74 (2015).  https://doi.org/10.1007/s12217-015-9413-5 CrossRefGoogle Scholar
  18. Feudel, F., Tuckerman, L., Gellert, M., Seehafer, N.: Bifurcations of rotating waves in rotating spherical shell convection. Phys. Rev. E 92(053015) (2015)Google Scholar
  19. Futterer, B., Gellert, M., von Larcher, T., Egbers, C.: Thermal convection in rotating spherical shells: an experimental and numerical approach within GeoFlow. Acta Astronautica 62(4–5), 300–307 (2008).  https://doi.org/10.1016/j.actaastro.2007.11.006. http://www.sciencedirect.com/science/article/pii/S0094576507003013 CrossRefGoogle Scholar
  20. Futterer, B., Krebs, A., Plesa, A.C., Zaussinger, F., Hollerbach, R., Breuer, D., Egbers, C.: Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. J. Fluid Mech. 735, 647–683 (2013).  https://doi.org/10.1017/jfm.2013.507. https://www.cambridge.org/core/article/div-class-title-sheet-like-and-plume-like-thermal-flow-in-a-spherical-convection-experiment-performed-under-microgravity-div/32CFFF7061E5F96C8153453826DCFF55 CrossRefzbMATHGoogle Scholar
  21. Futterer, B., Dahley, N., Egbers, C.: Thermal electro-hydrodynamic heat transfer augmentation in vertical annuli by the use of dielectrophoretic forces through a.c. electric field. Int. J. Heat Mass Transf. 93, 144–154 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.005. http://www.sciencedirect.com/science/article/pii/S0017931015010030 CrossRefGoogle Scholar
  22. Gastine, T., Wicht, J., Aurnou, J.: Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225(1), 156–172 (2013a).  https://doi.org/10.1016/j.icarus.2013.02.031. http://www.sciencedirect.com/science/article/pii/S001910351300119X CrossRefGoogle Scholar
  23. Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. Lett. 438(1), L76–L80 (2013b).  https://doi.org/10.1093/mnrasl/slt162 CrossRefGoogle Scholar
  24. Hart, J.E., Glatzmaier, G.A., Toomre, J.: Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519–544 (1986).  https://doi.org/10.1017/S0022112086001258. https://www.cambridge.org/core/article/div-class-title-space-laboratory-and-numerical-simulations-of-thermal-convection-in-a-rotating-hemispherical-shell-with-radial-gravity-div/E5DC65212D6332D9720933F64AC208D4 CrossRefGoogle Scholar
  25. Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on jupiter in a deep convection model. Nature 438(7065), 193–196 (2005).  https://doi.org/10.1038/nature04208 CrossRefGoogle Scholar
  26. Hollerbach, R., Wiener, R.J., Sullivan, I.S., Donnelly, R.J., Barenghi, C.F.: The flow around a torsionally oscillating sphere. Phys. Fluids 14(12), 4192–4205 (2002).  https://doi.org/10.1063/1.1518029 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Jehring, L., Egbers, C., Beltrame, P., Chossat, P., Feudel, F., Hollerbach, R., Mutabazi, I., Tuckerman, L.: Geoflow: First results from geophysical motivated experiments inside the fluid science laboratory of columbus. American Institute of Aeronautics and Astronautics, pp 1–15. AIAA 2009-960.  https://doi.org/10.2514/6.2009-960(2009)
  28. Jenson, R.M., Wollman, A.P., Weislogel, M.M., Sharp, L., Green, R., Canfield, P.J., Klatte, J., Dreyer, M.E.: Passive phase separation of microgravity bubbly flows using conduit geometry. Int. J. Multiphase Flow 65, 68–81 (2014)CrossRefGoogle Scholar
  29. Jules, K., McPherson, K., Hrovat, K., Kelly, E.: Initial characterization of the microgravity environment of the international space station: increments 2 through 4. Acta Astronaut. 55(10), 855–887 (2004).  https://doi.org/10.1016/j.actaastro.2004.04.008. http://www.sciencedirect.com/science/article/pii/S0094576504002061 CrossRefGoogle Scholar
  30. Julien, K., Rubio, A.M., Grooms, I., Knobloch, E.: Statistical and physical balances in low rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106(4-5), 392–428 (2012).  https://doi.org/10.1080/03091929.2012.696109 MathSciNetCrossRefGoogle Scholar
  31. Kelley, D.H., Triana, S.A., Zimmerman, D.S., Lathrop, D.P.: Selection of inertial modes in spherical couette flow. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 81(2 Pt 2), 026,311 (2010).  https://doi.org/10.1103/PhysRevE.81.026311 CrossRefGoogle Scholar
  32. Kuhl, R., Roth, M., Binnenbruck, H., Dreier, W., Forke, R., Preu, P.: The role of sounding rocket microgravity experiments within the german physical sciences programme. In: Warmbein, B (ed.) 17Th ESA Symposium on European Rocket and Balloon Programmes and Related Research, vol. 590, pp 503-508. ESA Special Publication (2005)Google Scholar
  33. Liu, M., Egbers, C., Delgado, A., Rath, H.: Investigation of density driven large-scale ocean motion under microgravity. In: Rath, HJ (ed.) , p 573?581. Springer, Berlin (1992)Google Scholar
  34. Lotto, M.A., Johnson, K.M., Nie, C.W., Klaus, D.M.: The impact of reduced gravity on free convective heat transfer from a finite, flat, vertical plate. Microgravity Sci. Technol. 29(5), 371–379 (2017).  https://doi.org/10.1007/s12217-017-9555-8 CrossRefGoogle Scholar
  35. Maeder, A.: On the Richardson criterion for shear instabilities in rotating stars. Astron. Astrophys. 299, 84 (1995)Google Scholar
  36. Mamun, C.K., Tuckerman, L.S.: Asymmetry and hopf bifurcation in spherical couette flow. Phys. Fluids 7(1), 80–91 (1995).  https://doi.org/10.1063/1.868730 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Manneville, J.B., Olson, P.: Banded convection in rotating fluid spheres and the circulation of the Jovian atmosphere. Icarus 122(2), 242–250 (1996).  https://doi.org/10.1006/icar.1996.0123. http://www.sciencedirect.com/science/article/pii/S0019103596901232 CrossRefGoogle Scholar
  38. Meier, M., Jongmanns, M., Meyer, A., Seelig, T., Egbers, C., Mutabazi, I.: Flow pattern and heat transfer in a cylindrical annulus under 1 g and low-g conditions: Experiments. Microgravity Sci. Technol. 30(5), 699–712 (2018).  https://doi.org/10.1007/s12217-018-9649-y CrossRefGoogle Scholar
  39. Meyer, A., Jongmanns, M., Meier, M., Egbers, C., Mutabazi, I.: Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity. Comptes Rendus Mécanique 345 (1), 11–20 (2017).  https://doi.org/10.1016/j.crme.2016.10.003. http://www.sciencedirect.com/science/article/pii/S1631072116301000, basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contributionCrossRefGoogle Scholar
  40. Meyer, A., Crumeyrolle, O., Mutabazi, I., Meier, M., Jongmanns, M., Renoult, M.C., Seelig, T., Egbers, C.: Flow patterns and heat transfer in a cylindrical annulus under 1g and low-g conditions: Theory and simulation. Microgravity Sci. Technol. 30(5), 653–662 (2018).  https://doi.org/10.1007/s12217-018-9636-3 CrossRefGoogle Scholar
  41. Mutabazi, I., Yoshikawa, H.N., Fogaing, M.T., Travnikov, V., Crumeyrolle, O., Futterer, B., Egbers, C.: Thermo-electro-hydrodynamic convection under microgravity: a review. Fluid Dyn. Res. 48(6), 061,413 (2016). http://stacks.iop.org/1873-7005/48/i=6/a=061413 MathSciNetCrossRefGoogle Scholar
  42. Platten, J., Legros, J.: Convection in Liquids. Springer, Berlin (2012). https://books.google.de/books?id=S8buCAAAQBAJ zbMATHGoogle Scholar
  43. Prodi, F., Santachiara, G., Travaini, S., Vedernikov, A., Dubois, F., Minetti, C., Legros, J.: Measurements of phoretic velocities of aerosol particles in microgravity conditions. Atmospheric Research 82(1), 183–189 (2006).  https://doi.org/10.1016/j.atmosres.2005.09.010. http://www.sciencedirect.com/science/article/pii/S0169809506000342, 14th International Conference on Clouds and PrecipitationCrossRefGoogle Scholar
  44. Read, P.L., Yamazaki, Y.H., Lewis, S.R., Williams, P.D., Miki-Yamazaki, K., Sommeria, J., Didelle, H., Fincham, A.: Jupiter’s and saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett. 31(22).  https://doi.org/10.1029/2004GL020106 (2004)
  45. Renka, R.J.: Algorithm 660: Qshep2d: Quadratic shepard method for bivariate interpolation of scattered data. ACM Trans. Math. Softw. 14 (2), 149–150 (1988).  https://doi.org/10.1145/45054.356231. http://doi.acm.org/10.1145/45054.356231 MathSciNetCrossRefzbMATHGoogle Scholar
  46. Rice, J.E., Fox, J.C., Lange, W.G., Dietrich, R.W., Wagar, W.O.: Microgravity acceleration measurement system for the international space station (1999)Google Scholar
  47. Rieutord, M., Triana, S.A., Zimmerman, D.S., Lathrop, D.P.: Excitation of inertial modes in an experimental spherical couette flow. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 86(2 Pt 2), 026,304 (2012).  https://doi.org/10.1103/PhysRevE.86.026304 CrossRefGoogle Scholar
  48. Scolan, H., Read, P.L.: A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment. Exp. Fluids 58 (6).  https://doi.org/10.1007/s00348-017-2347-5 (2017)
  49. Shevtsova, V.M., Melnikov, D.E., Legros, J.C.: The study of weak oscillatory flows in space experiments. Microgravity Sci. Technol. 15(1), 49–61 (2004).  https://doi.org/10.1007/BF02870952 CrossRefGoogle Scholar
  50. Smirnov, N.N., Nikitin, V.F., Ivashnyov, O.E., Maximenko, A., Thiercelin, M., Vedernikov, A., Scheid, B., Legros, J.C.: Microgravity investigations of instability and mixing flux in frontal displacement of fluids. Microgravity Sci. Technol. 15(2), 35–51 (2004).  https://doi.org/10.1007/BF02870957 CrossRefGoogle Scholar
  51. Travnikov, V., Egbers, C., Hollerbach, R.: The Geoflow-experiment on ISS (Part II): Numerical simulation. Adv. Space Res. 32(2), 181–189 (2003).  https://doi.org/10.1016/S0273-1177(03)90249-3. http://www.sciencedirect.com/science/article/pii/S0273117703902493, gravitational Effects in Physico-Chemical ProcessesCrossRefGoogle Scholar
  52. Travnikov, V., Zaussinger, F., Beltrame, P., Egbers, C.: Influence of the temperature-dependent viscosity on convective flow in the radial force field. Phys. Rev. E. 96(2) (2017)Google Scholar
  53. Vilella, K., Deschamps, F.: Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection. Geophys. J. Int. 214(1), 265–281 (2018).  https://doi.org/10.1093/gji/ggy138 CrossRefGoogle Scholar
  54. Vincze, M., Borchert, S., Achatz, U., von Larcher, T., Baumann, M., Liersch, C., Remmler, S., Beck, T., Alexandrov, K.D., Egbers, C., Fröhlich, J, Heuveline, V., Hickel, S., Harlander, U.: Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics. Meteorologische Zeitschrift 23(6), 611–635 (2015).  https://doi.org/10.1127/metz/2014/0600 CrossRefGoogle Scholar
  55. Vorontsov, S.V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V.N., Thompson, M.J.: Helioseismic measurement of solar torsional oscillations. Science 296(5565), 101–103 (2002).  https://doi.org/10.1126/science.1069190. https://science.sciencemag.org/content/296/5565/101 CrossRefGoogle Scholar
  56. Wang, Y., Read, P.: Diversity of planetary atmospheric circulations and climates in a simplified general circulation model. Proceedings IAU Symposium 8(S293), 297–302 (2012).  https://doi.org/10.1017/S1743921313013033. https://www.cambridge.org/core/article/diversity-of-planetary-atmospheric-circulations-and-climates-in-a-simplified-general-circulation-model/F06958904E99B92B8B9B208A3E630E0B CrossRefGoogle Scholar
  57. Waszek, L., Irving, J., Deuss, A.: Reconciling the hemispherical structure of earth’s inner core with its super-rotation. Nat. Geosci. 4, 264 EP– (2011).  https://doi.org/10.1038/ngeo1083
  58. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998).  https://doi.org/10.1063/1.168744 CrossRefGoogle Scholar
  59. Zaussinger, F., Krebs, A., Travnikov, V., Egbers, C.: Recognition and tracking of convective flow patterns using Wollaston shearing interferometry. Adv. Space Res. 60(6), 1327 – 1344 (2017).  https://doi.org/10.1016/j.asr.2017.06.028. http://www.sciencedirect.com/science/article/pii/S0273117717304544 CrossRefGoogle Scholar
  60. Zaussinger, F., Canfield, P., Driebe, T., Egbers, C., Heintzmann, P., Travnikov, V., Froitzheim, A., Haun, P., Meier, M.: Atmoflow - simulating atmospheric flows on the international space station. Part II: experiments and numerical simulations. In: 69th IAC Conference Proceedings, International Astronautical Federation, vol 18.A2.7.18-69 (2018a)Google Scholar
  61. Zaussinger, F., Haun, P., Neben, M., Seelig, T., Travnikov, V., Egbers, C., Yoshikawa, H., Mutabazi, I.: Dielectrically driven convection in spherical gap geometry. Phys. Rev. Fluids 3, 093,501 (2018b).  https://doi.org/10.1103/PhysRevFluids.3.093501. https://link.aps.org/doi/10.1103/PhysRevFluids.3.093501 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Aerodynamics and Fluid MechanicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  2. 2.Airbus Defence and Space GmbHImmenstaadGermany
  3. 3.Deutsches Zentrum für Luft- und Raumfahrt e.V.BonnGermany

Personalised recommendations