Advertisement

Friction Property of Impact Sliding Contact under Vacuum and Microgravity

  • Ruiting Tong
  • Geng Liu
Original Article
  • 8 Downloads

Abstract

Vacuum and microgravity are two typical environments in space. High friction in the space environment is a challenge to the spacecraft. In vacuum, the adhesion effects are severe to induce a high friction force due to clean contact surfaces. Besides, the microgravity environment results in impact between the contact bodies, which will influence the friction property further. It is difficult to do microgravity friction experiments on the earth, and the chance to do a friction experiment in space is scarce. In this paper, considering adhesion effects in vacuum, a modelling method is developed to investigate the nanoscale impact sliding contact under microgravity. Based on energy conservation principle, the kinematic mechanism of a sliding contact body under microgravity is modeled, and the effects of impact on friction property is studied by comparing with the result of a smooth sliding contact. Considering the kinematic mechanism, the friction properties are investigated for different impact velocity and different tip radius. The kinetic energy of the tip will be converted to the mechanical energy during the impact process, and the friction forces could be underestimated if the impact effects are neglected. Owing to the contribution of impact velocity and the mass of the tip to the kinetic energy, the friction forces are increased as the increase of impact velocity and tip radius. Furthermore, using the principle of tribology, the ploughing component and adhesion component of the friction force are discussed to explain the friction phenomena under vacuum and microgravity environments.

Keywords

Impact sliding contact Friction property Vacuum Microgravity 

Notes

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (51675429), China Scholarship Council (No.201706295034), Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical University and the 111 Project (B13044) for their financial support.

References

  1. Agrawal, P.M., Rice, B.M., Thompson, D.L.: Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515(1), 21–35 (2002)CrossRefGoogle Scholar
  2. Alves, J., Peixinho, N., Tavares da Silva, M., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory. 85, 172–188 (2015)CrossRefGoogle Scholar
  3. Bai, Z.F., Zhao, Y.: A hybrid contact force model of revolute joint with clearance for planar mechanical systems. Int. J. Nonlin. Mech. 48, 15–36 (2013)CrossRefGoogle Scholar
  4. Baney, J.M., Hui, C.-Y.: A cohesive zone model for the adhesion of cylinders. J. Adhes. Sci. Technol. 11(3), 393–406 (1997)CrossRefGoogle Scholar
  5. Bradley, R.S.: The cohesion force between solid surfaces and the surface energy of solids. Philos. Mag. 13(86), 853–862 (1932)CrossRefGoogle Scholar
  6. Buckley, D.H.: Friction, wear and lubrication in vacuum. In: NASA Lewis Research Center NASA SP-277 (1971)Google Scholar
  7. Ciavarella, M., Decuzzi, P.: The state of stress induced by the plane frictionless cylindrical contact 1: the case of elastic similarity. Int. J. Solids Struct. 38(26–27), 4507–4523 (2001a)CrossRefGoogle Scholar
  8. Ciavarella, M., Decuzzi, P.: The state of stress induced by the plane frictionless cylindrical contact 2: the general case (elastic dissimilarity). Int. J. Solids Struct. 38(26–27), 4523–4533 (2001b)zbMATHGoogle Scholar
  9. Deng, Z., Smolyanitsky, A., Li, Q.Y., Feng, X.Q., Cannara, R.J.: Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012)CrossRefGoogle Scholar
  10. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)CrossRefGoogle Scholar
  11. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A. 31(3), 030801(1–24) (2013)CrossRefGoogle Scholar
  12. Erkaya, S.: Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network. J. Mech. Sci. Technol. 26(5), 1419–1430 (2012)CrossRefGoogle Scholar
  13. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlin. Dyn. 7(3), 636–647 (2012)CrossRefGoogle Scholar
  14. Gao, G.T., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir. 23(10), 5394–5405 (2007)CrossRefGoogle Scholar
  15. Gaponenko, Y., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28(4), 431–439 (2016)CrossRefGoogle Scholar
  16. Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B. 46(15), 9700–9708 (1992)CrossRefGoogle Scholar
  17. Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear. 168(1–2), 127–133 (1993)CrossRefGoogle Scholar
  18. Hertz, H.: On the contact of solids-on the contact of rigid elastic solids and on hardness. In: Jones, D.E., Schott, G.A. (Trans.) Miscellaneous Papers, pp. 146–183. MacMillan and Co. Ltd., London (1896)Google Scholar
  19. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104(25), 256101(1–4) (2010)CrossRefGoogle Scholar
  20. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A. 324(1558), 301–313 (1971)CrossRefGoogle Scholar
  21. Johnson, K.L., Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192(2), 326–333 (1997)CrossRefGoogle Scholar
  22. Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31(8), 413–418 (1998)CrossRefGoogle Scholar
  23. Karpunin, I.E., Kozlova, A.N., Kozlov, N.V.: Behavior of a light solid in a rotating horizontal cylinder with liquid under vibration. Microgravity Sci. Technol. 30(3–4), 399–409 (2018)CrossRefGoogle Scholar
  24. Karthikeyan, S., Agrawal, A., Rigney, D.A.: Molecular dynamics simulations of sliding in an Fe-cu tribopair system. Wear. 267(5–8), 1166–1176 (2009)CrossRefGoogle Scholar
  25. Kim, H.-J., Kim, D.-E.: Nano-scale friction: a review. Int. J. Precis. Eng. Man. 10(2), 141–151 (2009)CrossRefGoogle Scholar
  26. Krick, B.A., Muratore, C., Burris, D.L., Carpick, R.W., Prasad, S.V., Korenyi-Both, A., Voevodin, A.A., Jones, J.G., Sawyer, W.G.: Space tribology: experiments in low earth orbit, vol. 8-13. World Tribology Congress, Torino, Italy (2013)Google Scholar
  27. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)CrossRefGoogle Scholar
  28. Lee, C.G., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science. 328(5974), 76–80 (2010)CrossRefGoogle Scholar
  29. Liu, C.S., Zhang, K., Yang, R.: The compliance contact model of cylindrical joints with clearance. Acta Mech. Sinica. 21(5), 451–458 (2005)CrossRefGoogle Scholar
  30. Liu, C.S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory. 42(2), 183–197 (2007)CrossRefGoogle Scholar
  31. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature. 435, 929–932 (2005)CrossRefGoogle Scholar
  32. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E. 74(4), 046710(1–11) (2006)CrossRefGoogle Scholar
  33. Ma, J., Qian, L., Chen, G., Li, M.: Dynamic analysis of mechanical systems with planar revolute joints with clearance. Mech. Mach. Theory. 94, 148–164 (2015)CrossRefGoogle Scholar
  34. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150(1), 243–269 (1992)CrossRefGoogle Scholar
  35. Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature. 457, 1116–1119 (2009)CrossRefGoogle Scholar
  36. Moore, D.F.: Principles and Applications of Tribology. Pergamon Press, Oxford (1975)Google Scholar
  37. Morrow, C.A., Lovell, M.R.: An extension to a cohesive zone solution for adhesive cylinders. ASME. J. Tribol. 127(2), 447–450 (2005)CrossRefGoogle Scholar
  38. Pimenova, A.V., Goldobin, D.S., Lyubimova, T.P.: Comparison of the effect of horizontal vibrations on interfacial waves in a two-layer system of inviscid liquids to effective gravity inversion. Microgravity Sci. Technol. 30(1–2), 1–10 (2018)CrossRefGoogle Scholar
  39. Qi, Y., Cheng, Y.-T., Çağin, T., Goddard III, W.A.: Friction anisotropy at Ni(100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B. 66(8), 085420(1–7) (2002)CrossRefGoogle Scholar
  40. Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science. 313(5784), 207–210 (2006)CrossRefGoogle Scholar
  41. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982)CrossRefGoogle Scholar
  42. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D. Appl. Phys. 41(12), 123001(1–39) (2008)CrossRefGoogle Scholar
  43. Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58(1), 2–13 (1977)CrossRefGoogle Scholar
  44. Tangpatjaroen, C., Grierson, D., Shannon, S., Jakes, J.E., Szlufarska, I.: Size dependence of nanoscale wear of silicon carbide. ACS Appl. Mater. Interfaces. 9(2), 1929–1940 (2017)CrossRefGoogle Scholar
  45. Tian, K.W., Gosvami, N.N., Goldsby, D.L., Liu, Y., Szlufarska, I., Carpick, R.W.: Load and time dependence of interfacial chemical bond-induced friction at the nanoscale. Phys. Rev. Lett. 118(7), 076103(1–6) (2017)CrossRefGoogle Scholar
  46. Tong, R.T., Liu, G., Liu, T.X.: Multiscale analysis on two dimensional nanoscale sliding contacts of textured surfaces. ASME J. Tribol. 133(4), 041401(1–13) (2011)CrossRefGoogle Scholar
  47. Tong, R.T., Liu, G., Liu, T.X.: Two dimensional nanoscale reciprocating sliding contacts of textured surfaces. Chin. J. Mech. Eng.-En. 29(3), 531–538 (2016)CrossRefGoogle Scholar
  48. Wang, X.P., Liu, G.: Modeling and simulation of revolute joint with clearance in planar multi-body systems. J. Mech. Sci. Technol. 29(10), 4113–4120 (2015)CrossRefGoogle Scholar
  49. Wang, X.P., Liu, G., Ma, S.J.: Dynamic analysis of planar mechanical systems with clearance joints using a new nonlinear contact force model. J. Mech. Sci. Technol. 30(4), 1537–1545 (2016)CrossRefGoogle Scholar
  50. Wang, X.P., Liu, G., Ma, S.J., Tong, R.T.: Effects of restitution coefficient and material characteristics on dynamic response of planar multi-body systems with revolute clearance joint. J. Mech. Sci. Technol. 31(2), 587–597 (2017)CrossRefGoogle Scholar
  51. Wang, Z.L., Gabriel, K.S.: The influence of film structure on the interfacial friction in annular two-phase flow under microgravity and normal gravity conditions. Microgravity Sci. Technol. 16(1–4), 264–268 (2005)CrossRefGoogle Scholar
  52. Ye, Z.J., Egberts, P., Han, G.H., Johnson, A.T., Carpick, R.W., Martini, A.: Load-dependent friction hysteresis on graphene. ACS Nano. 10(5), 5161–5168 (2016)CrossRefGoogle Scholar
  53. Zhang, Q., Qi, Y., Hector Jr., L.G., Çağin, T., Goddard III, W.A.: Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Phys. Rev. B. 72(4), 045406(1–12) (2005)Google Scholar
  54. Zhang, H.W., Chang, T.C.: Edge orientation dependent nanoscale friction. Nanoscale. 10(5), 2447–2453 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Shaanxi Engineering Laboratory for Transmissions and ControlsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations