Microgravity Science and Technology

, Volume 30, Issue 5, pp 675–682 | Cite as

Determination of Diffusion Coefficient in Droplet Evaporation Experiment Using Response Surface Method

  • Xue Chen
  • Xun Wang
  • Paul G. Chen
  • Qiusheng Liu
Original Article
Part of the following topical collections:
  1. Interdisciplinary science challenges for gravity dependent phenomena in physical and biological systems


Evaporation of a liquid droplet resting on a heated substrate is a complex free-surface advection-diffusion problem, in which the main driving force of the evaporation is the vapor concentration gradient across the droplet surface. Given the uncertainty associated with the diffusion coefficient of the vapor in the atmosphere during space evaporation experiments due to the environmental conditions, a simple and accurate determination of its value is of paramount importance for a better understanding of the evaporation process. Here we present a novel approach combining numerical simulations and experimental results to address this issue. Specifically, we construct a continuous function of output using a Kriging-based response surface method, which allows to use the numerical results as a black-box with a limited number of inputs and outputs. Relevant values of the diffusion coefficient can then be determined by solving an inverse problem which is based on accessible experimental data and the proposed response surface. In addition, on the basis of our numerical simulation results, we revisit a widely used formula for the prediction of the evaporation rate in the literature and propose a refined expression for the droplets evaporating on a heated substrate.


Droplet evaporation Diffusion coefficient Response surface Marangoni flow Microgravity 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 11532015), the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant No. XDA 04020202-02) and by the CNES (Centre National d’Etudes Spatiales). X. Chen has benefited from financial support from the Guangxi’s Key Laboratory Foundation of Manufacturing Systems and Advanced Manufacturing Technology (Grant No. 17-259-05-002Z) and China Postdoctoral Science Foundation (2018M633113).


  1. Birdi, K., Vu, D., Winter, A.: A study of the evaporation rates of small water drops placed on a solid surface. J. Phys. Chem. 93, 3702–3703 (1989)CrossRefGoogle Scholar
  2. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009)CrossRefGoogle Scholar
  3. Bouchenna, C., Ait Saada, M., Chikh, S., Tadrist, L.: Generalized formulation for evaporation rate and flow pattern prediction inside an evaporating pinned sessile drop. Int. J. Heat Mass Transf. 109, 482–500 (2017)CrossRefGoogle Scholar
  4. Brutin, D., Zhu, Z.Q., Rahli, O., Xie, J.C., Liu, Q.S., Tadrist, L.: Evaporation of ethanol drops on a heated substrate under microgravity conditions. Microgravity Sci. Technol. 22, 387–395 (2010)CrossRefGoogle Scholar
  5. Carle, F., Semenov, S., Medale, M., Brutin, D.: Contribution of convective transport to evaporation of sessile droplets: empirical model. Int. J. Therm. Sci. 101, 35–47 (2016)CrossRefGoogle Scholar
  6. Chen, X., Chen, P.G., Ouazzani, J., Liu, Q.S.: Numerical simulations of sessile droplet evaporating on heated substrate. Eur. Phys. J. Special Top. 226, 1325–1335 (2017a)CrossRefGoogle Scholar
  7. Chen, X., Wang, X., Chen, P.G., Liu, Q.S.: Thermal effects of substrate on Marangoni flow in droplet evaporation: Response surface and sensitivity analysis. Int. J. Heat Mass Transf. 113, 354–365 (2017b)CrossRefGoogle Scholar
  8. Chen, X., Ding, Z., Liu, R.: Spreading of annular droplets on a horizontal fiber. Microgravity Sci. Technol. 30, 143–153 (2018)CrossRefGoogle Scholar
  9. Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., Sefiane, K.: The strong influence of substrate conductivity on droplet evaporation. J. Fluid. Mech. 623, 329–351 (2009)CrossRefGoogle Scholar
  10. Echard, B., Gayton, N., Lemaire, M.: AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct. Safety 33, 145–154 (2011)CrossRefGoogle Scholar
  11. Erbil, H.Y.: Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interf. Sci. 170, 67–86 (2012)CrossRefGoogle Scholar
  12. Erbil, H.Y., Dogan, M.: Determination of diffusion coefficient-Vapor pressure product of some liquids from hanging drop evaporation. Langmuir 16, 9267–9273 (2000)CrossRefGoogle Scholar
  13. Gatapova, E.Y., Semenov, A.A., Zaitsev, D.V., Kabov, O.A.: Evaporation of a sessile water drop on a heated surface with controlled wettability. Colloids Surf. A Physicochem. Eng. Asp. 441, 776–785 (2014)CrossRefGoogle Scholar
  14. Gayton, N., Bourinet, J.M., Lemaire, M.: CQ2RS: a new statistical approach to the response surface method for reliability analysis. Struct. Saf. 25, 99–121 (2003)CrossRefGoogle Scholar
  15. Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320–328 (1975)CrossRefGoogle Scholar
  16. Hu, H., Larson, R.G.: Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334–1344 (2002)CrossRefGoogle Scholar
  17. Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., et al.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26, 159–169 (2014)CrossRefGoogle Scholar
  18. Krige, D.G.: A statistical approach to some basic mine valuations problems on the Witwatersrand. J. Chem. Metall. Mining Soc. South Africa 52, 119–139 (1951)Google Scholar
  19. Langmuir, I.: The evaporation of small spheres. Phys. Rev. 12, 368–370 (1918)CrossRefGoogle Scholar
  20. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)CrossRefGoogle Scholar
  21. Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell. Collected Scientific Papers (Cambridge, Cambridge University Press) 11, 625 (1890)Google Scholar
  22. Morse, H.W., Pierce, G.W.: Diffusion and Supersaturation in Gelatine. Proc. Am. Phys. Chem. 38, 625–648 (1903)zbMATHGoogle Scholar
  23. Park, K., Lee, K.S.: Flow and heat transfer characteristics of the evaporating extended meniscus in a micro-capillary channel. Int. J. Heat Mass Transf. 46, 4587–4594 (2003)CrossRefGoogle Scholar
  24. Picknett, R., Bexon, R.: The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336–350 (1977)CrossRefGoogle Scholar
  25. Popov, Y.O.: Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313 (2005)CrossRefGoogle Scholar
  26. Ristenpart, W.D., Kim, P.G., Domingues, C., Wan, J., Stone, H.A.: Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 23450 (2007)CrossRefGoogle Scholar
  27. Rowan, S.M., Newton, M.I., McHale, G.: Evaporation of microdroplets and the wetting of solid surfaces. J. Phys. Chem. 99, 13268–13271 (1995)CrossRefGoogle Scholar
  28. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output: design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)MathSciNetCrossRefGoogle Scholar
  29. Sartre, V., Zaghdoudi, M. C., Lallemand, M.: Effect of interfacial phenomena on evaporative heat transfer in micro heat pipes. Int. J. Therm. Sci. 39, 498–504 (2000)CrossRefGoogle Scholar
  30. Semenov, S., Carle, F., Medale, M., Brutin, D.: Boundary conditions for a one-side numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates. Phys. Rev. E 96, 063113 (2017)CrossRefGoogle Scholar
  31. Wang, X., Khazaie, S., Margheri, L., Sagaut, P.: Shallow water sound source localization using the iterative beamforming method in an image framework. J. Sound Vib. 395, 354–370 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Xue Chen
    • 1
  • Xun Wang
    • 2
  • Paul G. Chen
    • 3
  • Qiusheng Liu
    • 4
    • 5
  1. 1.Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, School of Mechanical and Electrical EngineeringGuilin University of Electronic TechnologyGuilinChina
  2. 2.Department of Civil and Environmental EngineeringHong Kong University of Science and TechnologyHong KongChina
  3. 3.Aix Marseille Univ, CNRS, Centrale Marseille, M2P2MarseilleFrance
  4. 4.Key Laboratory of Microgravity, Institute of MechanicsChinese Academy of SciencesBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations