Advertisement

Microgravity Science and Technology

, Volume 30, Issue 4, pp 561–569 | Cite as

Thermocapillary Bubble Migration at High Reynolds and Marangoni Numbers: 3D Numerical Study

  • Yousuf Alhendal
  • Ali Turan
  • Abdulrahim Kalendar
  • Hosny Abou-Ziyan
  • Rafik El-shiaty
Original Article
  • 53 Downloads

Abstract

Thermocapillary motion of initially spherical bubbles due to the constant temperature gradient in a liquid bounded medium is simulated numerically for low, intermediate, high Reynolds and Marangoni numbers using a three dimensional model. The volume of fluid (VOF) method was used to track the liquid/gas interface utilizing a geometric reconstruction scheme based on the piece-wise linear interface calculation (PLIC) method of Ansys-Fluent (2011) to capture the bubble interface. The simulation results are in good agreement with the earlier experimental observations, and the migration velocity of the bubble is greatly influenced by the temperature gradient which thrusts the bubble from cold to hot regime. The results indicate that the scaled velocity of bubbles decreases with an increase of the Marangoni number, which agrees with the results of previous space experiments. Thermal Marangoni number (MaT) of single bubble migrating in the zero gravity condition ranged from 106 to 904620, exceeding that in the previous reported experiments and numerical data that was limited to 10,000. In addition, an expression for predicting the scaled velocity of the bubble has been developed based on the obtained data in the present numerical study.

Keywords

Bubble Two-phase Zero-gravity Thermocapillary Marangoni Surface tension gradient VOF-Ansys 

References

  1. Alhendal, Y., Turan, A.: Thermocapillary bubble dynamics in a 2d axis swirl domain. Heat Mass Transf. 51, 529–542 (2015)CrossRefGoogle Scholar
  2. Alhendal, Y., Turan, A.: Microgravity Sci. Technol. 28, 639 (2016).  https://doi.org/10.1007/s12217-016-9521-x CrossRefGoogle Scholar
  3. Alhendal, Y., Turan, A., Aly, W.I.A.: Vof simulation of Marangoni flow of gas bubbles in 2d-axisymmetric column. Procedia Comput. Sci. 1, 673–680 (2010)CrossRefGoogle Scholar
  4. Alhendal, Y., Turan, A., Hollingsworth, P.: Thermocapillary simulation of single bubble dynamics in zero gravity. Acta Astronaut. 88, 108–115 (2013)CrossRefGoogle Scholar
  5. Alhendal, Y., Turan, A., Al-mazidi, M.: Thermocapillary bubble flow and coalescence in a rotating cylinder: a 3D study. Acta Astronaut. 117, 484–496 (2015)CrossRefGoogle Scholar
  6. Ansys-Fluent: ANSYS Fluent User’s Guide. ANSYS, Inc. (2011)Google Scholar
  7. Balasubramaniam, R., Lavery, J.E.: Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transf. A 16(2), 175–187 (1989)CrossRefGoogle Scholar
  8. Balasubramaniam, R., Lacy, C.E, Wozniak, G.: Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys. Fluids 8(4), 872880 (1996)CrossRefGoogle Scholar
  9. Chen, J.C., Lee, Y.T.: Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30(4), 993–998 (1992)CrossRefGoogle Scholar
  10. Colin, C., Riou, X., Fabre, J: Bubble coalescence in gas–liquid flow at microgravity conditions. Microgravity Sci. Technol. 20(3), 243–246 (2008)CrossRefGoogle Scholar
  11. Hadland, P.H., Balasubramaniam, R., Wozniak, G., Subramanian, R S: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp. Fluids 26(3), 240–248 (1999)CrossRefGoogle Scholar
  12. Kang, Q., Cui, H.L., Duan, L.: On-board experimental study of bubble thermocapillary migration in a recoverable satellite. Microgravity Sci. Technol. 20(2), 67–71 (2008)CrossRefGoogle Scholar
  13. Larkin, B.K.: Thermocapillary flow around hemispherical bubble. AICHEJ 16, 101–107 (1970)CrossRefGoogle Scholar
  14. Ma, X.J.: Numerical simulation and experiments on liquid drops in a vertical temperature gradient in a liquid of nearly the same density. PhD thesis, Clarkson University, Potsdam, New York (1998)Google Scholar
  15. Nas, S., Tryggvason, G.: Computational investigation of the thermal migration of bubbles and drops. In: Proceedings of the ASME Winter Annual Meeting (AMD-174/FED-175), pp 71–83 (1993)Google Scholar
  16. Oliver, D.L.R., De Witt, K.J.: Transient motion of a gas bubble in a thermal gradient in low gravity. J. Colloid Interface Sci. 164, 263–268 (1994)CrossRefGoogle Scholar
  17. O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced marangoni convection: some aspects of bubble geometry. Microgravity Sci. Technol. 20(3), 319–325 (2008)MathSciNetCrossRefGoogle Scholar
  18. Radulescu, C., Robinson, A.J.: The influence of gravity and confinement on marangoni flow and heat transfer around a bubble in a cavity: a numerical study. Microgravity Sci. Technol. 20(3), 253–259 (2008)CrossRefGoogle Scholar
  19. Shankar, N., Subramanian, R.S.: The stokes motion of a gas bubble due to interfacial tension gradients at low to moderate Marangoni numbers. J. Colloid Interface Sci. 123(2), 512–522 (1988)CrossRefGoogle Scholar
  20. Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, London (2001)zbMATHGoogle Scholar
  21. Subramanian, R.S., Balasubramaniam, R., Wozniak, G.: Fluid mechanics of bubbles and drops. In: Physics of Fluids in Microgravity, pp 149–177. Gordon & Breach, Amsterdam (2001)Google Scholar
  22. Szymczyk, J.A., Siekmann, J.: Numerical calculation of the thermocapillary motion of a bubble under microgravity. Chem. Eng. Commun. 69(1), 129–147 (1988)CrossRefGoogle Scholar
  23. Thompson, R.L., Dewitt, K.J., Labus, T. L.: Marangoni bubble motion phenomenon in zero gravity. Chem. Eng. Commun. 5, 299–314 (1980)CrossRefGoogle Scholar
  24. Treuner, M., Galindo, V., Gerbeth, G., Langbein, D., Rath, H.J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity. J. Colloid Interface Sci. 179, 114–127 (1996)CrossRefGoogle Scholar
  25. Welch, S.W.J.: Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208, 500–508 (1998)CrossRefGoogle Scholar
  26. Wölk, G., Dreyer, M., Rath, H.J.: Flow patterns in small diameter vertical non-circular channels. Int. J. Multiphase Flow 26, 1037–1061 (2000)CrossRefzbMATHGoogle Scholar
  27. Xie, J.-C., Lin, H., Zhang, P., Liu, F., Hu, W.-R.: Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity. J. Colloid Interface Sci. 285, 737–743 (2005)CrossRefGoogle Scholar
  28. Young, N.O., Goldstein, J.S., Block, M. J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)CrossRefzbMATHGoogle Scholar
  29. Zhao, J-F., Li, Z-D., Li, H-X., Li, J.: Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22, 295–303 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yousuf Alhendal
    • 1
  • Ali Turan
    • 2
  • Abdulrahim Kalendar
    • 1
  • Hosny Abou-Ziyan
    • 1
  • Rafik El-shiaty
    • 1
  1. 1.College of Technological Studies (CTS)Public Authority for Applied Education and Training (PAAET)HawallyKuwait
  2. 2.School of Mechanical, Aerospace and Civil EngineeringThe University of ManchesterManchesterUK

Personalised recommendations