Advertisement

Microgravity Science and Technology

, Volume 30, Issue 4, pp 511–523 | Cite as

Use of Dynamic Scaling for Trajectory Planning of Floating Pedestal and Manipulator System in a Microgravity Environment

  • Zhanxia Zhu
  • Guanghui Zhang
  • Jiangzhou Song
  • Biwei Tang
  • Weihua Ma
  • Jianping Yuan
  • Chong Sun
  • Hongwen Zhang
  • Linli Guo
Original Article
  • 59 Downloads

Abstract

In this paper, motion planning and coordination is investigated for a space robot composed of a floating pedestal and manipulator. In some cases, such as a manipulator grasping a higher quality target, the dynamic coupling can occur leading to under-actuation of the floating pedestal (that is, the required control force of the pedestal exceeds the thrust limit). As a result, the desired operation may not be achieved due to large control error. Therefore, we propose an innovative planning method, termed dynamic scaling planning method, to avoid pedestal under-actuation and guarantee accuracy of manipulator operations. Furthermore, to validate the proposed method, an experimental model of a space robot operating in a magnetic-liquid hybrid suspension microgravity simulation environment was developed. Results of the experimental simulations demonstrate that the proposed method can effectively avoid under-actuation of the pedestal. Moreover, the end-effector of the manipulator follows a desired path to successfully reach its target location.

Keywords

Microgravity simulation environment Dynamic scaling Floating pedestal Manipulator arm Under-actuated state 

Notes

Acknowledgments

This work is funded by the National Natural Science Foundation of China (No. 11472213).

References

  1. Brungs, S., Egli, M, Wuest, S.L., Christianen, P.C.M, Loon, J.J.W.A.V, Anh, T.J.N, Hemmersbach, R: Facilities for simulation of microgravity in the ESA ground-based facility programmer. Micrograv. Sci. Technol. 28(3), 191–203 (2016)CrossRefGoogle Scholar
  2. Cristian, P.: Nonlinear Control of Underactuated Horizontal Double Pendulum [D]. Florida Atlantic University, Boca Raton (2002)Google Scholar
  3. Fernandes, C., Gurvits, L., Li, Z.X.: Near-optimal nonholonomic motion planningf or a system of coupled rigid bodies[J]. IEEE Trans. Autom. Control 39(3), 450–463 (1994)CrossRefzbMATHGoogle Scholar
  4. Gianluca, A.: Underwater Robots Third Edition[M]. Springer International, Switzerland (2014)Google Scholar
  5. Hollerbach, J.M.: Dynamic scaling of manipulator trajectories. ASME. J. Dyn. Syst. Meas. Control 106, 102–106 (1984)CrossRefzbMATHGoogle Scholar
  6. Hong, K.S.: An open-loop control for underactuated manipulators using oscillatory input: steering capability of an unactuated joint[J]. IEEE Trans. Control Syst. Technol. l0(3), 469–480 (2002)CrossRefGoogle Scholar
  7. Liu, J.: Sliding mode variable structure control MATLAB Simulation[M], pp 1–64. Tsinghua University Press, BeiJing (2015)Google Scholar
  8. Nenchev, D., Umetani, Y., Yoshida, K.: Analysis of a redundant free-flying spacecraft manipulator system[J]. IEEE Trans. Robot. Autom. 8(1), 1–6 (1992)CrossRefGoogle Scholar
  9. Papadopoulos, E., Tortopidis, I., Nanos, K.: Smooth Planning for Free-Floating Space Robots Using polynomials[C]. In: IEEE International Conference on Robotics and Automation, pp. 4272–4277, Barcelona (2005)Google Scholar
  10. Scherm, N., Heimann, B.: Dynamics and control of underactuated manipulation systems: a discrete-time approach[J]. J. Robot. Syst. 30(2), 237–248 (2000)CrossRefGoogle Scholar
  11. SNAME: Nomenclature for treating the motion of a submerged body through a fluid. Technical and Research Bulletin[R], pp. 1–5 (1950)Google Scholar
  12. Sun, C., Chen, S., Yuan, J., Zhu, Z.: A six-DOF buoyancy tank microgravity test bed with active drag compensation. Micrograv. Sci. Technol. 29(4), 391–402 (2017)CrossRefGoogle Scholar
  13. Suzuki, T., Nakamura, Y.: Planning Spiral Motion of Nonholonomic Space robots[C]. In: IEEE International Conferences on Robotics and Automation, pp. 718–725, Minneapolis (1996)Google Scholar
  14. Vafa, Z., Dubowsky, S.: On the dynamics of space manipulator using the virtual manipulator with application to path planning[J]. J. Astronaut. Sci. 38(3), 441–472 (1990)Google Scholar
  15. Yuan, J., Zhu, Z., Ming, Z., Luo, Q.: An innovative method for simulating microgravity effects through combining electromagnetic force and buoyancy. Adv. Space Res. 56(2), 355–364 (2015)CrossRefGoogle Scholar
  16. Zhu, Z., Yuan, J., Song, J., Cui, R.: An improving method for micro-G simulation with magnetism-buoyancy hybrid system. Adv. Space Res. 57, 2548–2558 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Zhanxia Zhu
    • 1
    • 2
  • Guanghui Zhang
    • 1
    • 2
  • Jiangzhou Song
    • 1
    • 2
  • Biwei Tang
    • 1
    • 2
  • Weihua Ma
    • 1
    • 2
  • Jianping Yuan
    • 1
    • 2
  • Chong Sun
    • 1
    • 2
  • Hongwen Zhang
    • 1
    • 2
  • Linli Guo
    • 3
  1. 1.Northwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.National Key Laboratory of Aerospace Flight DynamicsXi’anPeople’s Republic of China
  3. 3.China Academy of Space TechnologyBeijingPeople’s Republic of China

Personalised recommendations