Advertisement

Microgravity Science and Technology

, Volume 30, Issue 4, pp 393–398 | Cite as

Microgravity Investigation of Capillary Driven Imbibition

  • V. R. Dushin
  • V. F. Nikitin
  • N. N. Smirnov
  • E. I. Skryleva
  • V. V. Tyurenkova
Original Article
  • 69 Downloads
Part of the following topical collections:
  1. Topical Collection on Non-Equilibrium Processes in Continuous Media under Microgravity

Abstract

The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

Keywords

Microgravity Imbibition Capillary forces Porous media Seepage flows 

Notes

Acknowledgements

The authors wish to acknowledge the support by Russian Foundation for Basic Research (Grant initiative 17-08-01032).

References

  1. Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.: Theory of Fluids Flows through Natural Rocks. Kluwer Academic Publishers, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  2. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications Inc., New York (1988)zbMATHGoogle Scholar
  3. Bear, J., Bachmat, Y.: Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  4. Bratsun, D.A., Stepkina, O.S., Kostarev, K.G., Mizev, A.I., Mosheva, E.A.: Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Micrograv. Sci. Technol. 28, 575–585 (2016)CrossRefGoogle Scholar
  5. Chen, X.L., Gao, Y., Liu, Q.S: Drop tower experiment to study the capillary flow in symmetrical and asymmetrical channels: Experimental set-up and preliminary results. Micrograv. Sci. Technol. 28, 569–574 (2016)CrossRefGoogle Scholar
  6. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer-Verlag, New York (1995)CrossRefzbMATHGoogle Scholar
  7. Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall (1989)Google Scholar
  8. Li, Y.-Q., Cao, W.-H., Ling, L.: Numerical simulation of capillary flow in fan-shaped asymmetric interior corner under microgravity. Micrograv. Sci. Technol 29, 65–79 (2017)CrossRefGoogle Scholar
  9. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (1992)CrossRefzbMATHGoogle Scholar
  10. Nigmatilin, R.I.: Dynamics of Multiphase Media. Moscow Science Publication (1987)Google Scholar
  11. Smirnov, N.N., Dushin, V.R., Legros, J.C., Istasse, E., Boseret, N., Mincke, J.C., Goodman, S.: Multiphase flows in porous medium – mathematical model and microgravity experiments. Micrograv. - Sci. Technol. IX/3, 222–231 (1996)Google Scholar
  12. Smirnov, N.N., Nikitin, V.F., Norkin, A.V., Kudryavtseva, O.V., Legros, J.C., Istasse, E., Shevtsova, V.M.: Capillary Driven Filtration in Porous Media. Microgravity - Science and Technology, vol. XII/1, pp 23–35. Hanser Publ., Munich (1999)Google Scholar
  13. Smirnov, N.N., Legros, J.C., Nikitin, V.F., Istasse, E., Schramm, L., Wassmuth, F., D’Arcy, H.: Filtration in Artificial Porous Media and Natural Sands under Microgravity Conditions. Microgravity - Science and Technology, vol. XIV/2, pp 3–28. Z-Tec Publishing, Bremen (2003)Google Scholar
  14. Smirnov, N.N., Nikitin, V.F., Ivashnyov, O.E., Maximenko, A., Thiercelin, M., Vedernikov, A., Scheid, B., Legros, J.C.: Microgravity investigations of instability and mixing flux in frontal displacement of fluids. Micrograv. Sci. Technol XV/3, 3–28 (2004)Google Scholar
  15. Smirnov, N.N., Nikitin, V.F., Maximenko, A., Thiercelin, M., Legros, J.C.: Instability and mixing flux in frontal displacement of viscous fluids from porous media. Phys. Fluids 17, 084102 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Smirnov, N.N., Dushin, V., Nikitin, V., Philippov, Y: Two phase flows in porous media under microgravity conditions. Micrograv. Sci. Technol. 20(3-4), 155–160 (2008)CrossRefGoogle Scholar
  17. Smirnov, N.N., Dushin, V.R., Nikitin, V.F., Phylippov, Yu.G., Nerchenko, V.A.: Three-dimensional convection and unstable displacement of viscous fluids from strongly encumbered space. Acta Astronautica 66, 844–863 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • V. R. Dushin
    • 1
  • V. F. Nikitin
    • 1
    • 2
  • N. N. Smirnov
    • 1
    • 2
  • E. I. Skryleva
    • 1
    • 2
  • V. V. Tyurenkova
    • 1
    • 2
  1. 1.Moscow M.V. Lomonosov State UniversityMoscowRussia
  2. 2.Scientific Research Institute for System Analysis of the Russian Academy of SciencesMoscowRussia

Personalised recommendations