Advertisement

Microgravity Science and Technology

, Volume 30, Issue 4, pp 491–502 | Cite as

The Impact of Simulated Microgravity on the Growth of Different Genotypes of the Model Legume Plant Medicago truncatula

  • Gemma Lionheart
  • Joshua P. Vandenbrink
  • Jason D. Hoeksema
  • John Z. Kiss
Original Article

Abstract

Simulated microgravity has been a useful tool to help understand plant development in altered gravity conditions. Thirty-one genotypes of the legume plant Medicago truncatula were grown in either simulated microgravity on a rotating clinostat, or in a static, vertical environment. Twenty morphological features were measured and compared between these two gravity treatments. Within-species genotypic variation was a significant predictor of the phenotypic response to gravity treatment in 100% of the measured morphological and growth features. In addition, there was a genotype–environment interaction (G × E) for 45% of the response variables, including shoot relative growth rate (p < 0.0005), median number of roots (p ∼ 0.02), and root dry mass (p < 0.005). Our studies demonstrate that genotype does play a significant role in M. truncatula morphology and affects the response of plants to the gravity treatment, influencing both the magnitude and direction of the gravity response. These findings are discussed in the context of improving future studies in plant space biology by controlling for genotypic differences. Thus, manipulation of genotype effects, in combination with M. truncatula’s symbiotic relationships with bacteria and fungi, will be important for optimizing legumes for cultivation on long-term space missions.

Keywords

Clinorotation Gravitropism Legumes Medicago truncatula Simulated microgravity Space biology 

References

  1. Aarrouf, J., Demandre, C., Darbelley, N., Villard, C., Perbal, G.: Development of the primary root and mobilisation of reserves in etiolated seedlings of Brassica napus grown on a slowly rotating clinostat. J. Plant Physiol. 160(4), 409–413 (2003)CrossRefGoogle Scholar
  2. Ansdell, M., Ehrenfreund, P., McKay, C.: Stepping stones toward global space exploration. Acta Astronaut. 68(11-12), 2098–2113 (2011)CrossRefGoogle Scholar
  3. Babuscia, A., Cheung, K.-M., Divsalar, D., Lee, C.: Development of cooperative communication techniques for a network of small satellites and CubeSats in deep space: the SOLARA/SARA test case. Acta Astronaut. 115 (C), 349–355 (2015)CrossRefGoogle Scholar
  4. Barker, D.G., Pfaff, T., Moreau, D.: Choice of substrates and growth conditions. In: Medicago truncatula Handbook, pp. 1–26 (2006)Google Scholar
  5. Branca, A., Paape, T.D., Zhou, P., Briskine, R., Farmer, A.D., Mudge, J., Bharti, A.K., Woodward, J.E., May, G.D., Gentzbittel, L., Ben, C., Denny, R., Sadowsky, M.J., Ronfort, J., Bataillon, T., Young, N.D., Tiffin, P.: Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 108(42), E864–70 (2011)CrossRefGoogle Scholar
  6. Brungs, S., Petrat, G., von der Wiesche, M., Anken, R., Kolanus, W., Hemmersbach, R.: Simulating parabolic flight like g-profiles on ground - a combination of centrifuge and clinostat. Microgravity Sci. Technol. 28(3), 231–235 (2016)CrossRefGoogle Scholar
  7. Ciaralli, S., Coletti, M., Gabriel, S.B.: Performance and lifetime testing of a pulsed plasma thruster for Cubesat applications. Aerosp. Sci. Technol. 47(C), 291–298 (2015)CrossRefGoogle Scholar
  8. Ciaralli, S., Coletti, M., Gabriel, S.B.: Results of the qualification test campaign of a pulsed plasma thruster for Cubesat propulsion (PPTCUP). Acta Astronaut. 121(C), 314–322 (2016)CrossRefGoogle Scholar
  9. Cowles, J.R., Scheld, H.W., Lemay, R., Peterson, C.: Growth and lignification in seedlings exposed to eight days of microgravity. Ann. Bot. 54(S3), 33–48 (1984)CrossRefGoogle Scholar
  10. Dauzart, A.J.C., Vandenbrink, J.P., Kiss, J.Z.: The effects of clinorotation on the host plant, Medicago truncatula, and its microbial symbionts. Front. Astron. Space Sci. 3(3), 1–10 (2016)Google Scholar
  11. Duncan, E.J., Gluckman, P.D., Dearden, P.K.: Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype. J. Exp. Zool. (Mol. Dev. Evol.) 322(B), 208–220 (2014)CrossRefGoogle Scholar
  12. Ferl, R., Wheeler, R., Levine, H.G., Paul, A.L.: Plants in space. Curr. Opin. Plant Biol. 5(3), 258–263 (2002)CrossRefGoogle Scholar
  13. Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C.A., Topp, C.N., Iyer-Pascuzzi, A.S., Zurek, P.R., Fang, S., Harer, J., Benfey, P.N., Weitz, J.S.: GiA roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol. 12(1), 1–12 (2012)CrossRefGoogle Scholar
  14. Gan, X., Stegle, O., Behr, J., Steffen, J.G., Drewe, P., Hildebrand, K.L., Lyngsoe, R., Schultheiss, S.J., Osborne, E.J., Sreedharan, V.T., Kahles, A., Bohnert, R., Jean, G., Derwent, P., Kersey, P., Belfield, E.J., Harberd, N.P., Kemen, E., Toomajian, C., Kover, P.X., Clark, R.M., Rätsch, G., Mott, R.: Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477(7365), 419–423 (2011)CrossRefGoogle Scholar
  15. Garcia, J., Barker, D.G., Journet, E.-P.: Seed storage and germination. In: Medicago truncatula Handbook, pp. 1–9 (2006)Google Scholar
  16. Graham, P.H.: Legumes: importance and constraints to greater use. Plant Physiol. 131(3), 872–877 (2003)CrossRefGoogle Scholar
  17. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J.W.A., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013)CrossRefGoogle Scholar
  18. Hilaire, E., Peterson, B.V., Guikema, J.A., Brown, C.S.: Clinorotation affects morphology and ethylene production in soybean seedlings. Plant Cell Physiol. 37(7), 929–934 (1996)CrossRefGoogle Scholar
  19. Hoshino, T., Miyamoto, K., Ueda, J.: Gravity-controlled asymmetrical transport of auxin regulates a gravitropic response in the early growth stage of etiolated pea (Pisum sativum) epicotyls: studies using simulated microgravity conditions on a three-dimensional clinostat and using an agravitropic mutant, ageotropum. J. Plant Res. 120(5), 619–628 (2007)CrossRefGoogle Scholar
  20. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203(1), S187–S197 (1997)CrossRefGoogle Scholar
  21. Hou, G., Mohamalawari, D.R., Blancaflor, E.B.: Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol. 131(3), 1360–1373 (2003)CrossRefGoogle Scholar
  22. Iversen, T.E., Odegaard, E., Beisvag, T., Johnsson, A., Rasmussen, O.: The behaviour of normal and agravitropic transgenic roots of rapeseed (Brassica napus L.) under microgravity conditions. J. Biotechnol. 47(2-3), 137–154 (1996)CrossRefGoogle Scholar
  23. Kern, V.D., Schwuchow, J.M., Reed, D.W., Nadeau, J.A., Lucas, J., Skripnikov, A., Sack, F.D.: Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221 (1), 149–157 (2005)CrossRefGoogle Scholar
  24. Kiss, J.Z.: Mechanisms of the early phases of plant gravitropism. CRC Crit. Rev. Plant Sci. 19(6), 551–573 (2000)CrossRefGoogle Scholar
  25. Kiss, J.Z.: Plant biology in reduced gravity on the Moon and Mars. Plant Biol J. 16(1), 12–17 (2013)Google Scholar
  26. Kiss, J.Z.: Conducting plant experiments in space. In: Plant Gravitropism, pp 255–283. Springer, New York (2015)Google Scholar
  27. Kiss, J.Z., Aanes, G., Schiefloe, M., Coelho, L.H.F., Millar, K.D.L., Edelmann, R.E.: Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Adv. Space Res. 53(5), 818–827 (2014)CrossRefGoogle Scholar
  28. Kiss, J.Z., Brinckmann, E., Brillouet, C.: Development and growth of several strains of Arabidopsis seedlings in microgravity. Int. J. Plant Sci. 161(1), 55–62 (2000)CrossRefGoogle Scholar
  29. Kooke, R., Johannes, F., Wardenaar, R., Becker, F., Etcheverry, M., Colot, V., Vreugdenhil, D., Keurentjes, J.J.B.: Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell. 27(2), 337–348 (2015)CrossRefGoogle Scholar
  30. Korte, A., Farlow, A.: The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(29), 1–9 (2013)Google Scholar
  31. Kraft, T., van Loon, J., Kiss, J.Z.: Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211(3), 415–422 (2000)CrossRefGoogle Scholar
  32. Lehto, K.M., Lehto, H.J., Kanervo, E.A.: Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res. Microbiol. 157(1), 69–76 (2006)CrossRefGoogle Scholar
  33. Levine, H.G., Piastuch, W.C.: Growth patterns for etiolated soybeans germinated under spaceflight conditions. Adv Space Res. 36(7), 1237–1243 (2005)CrossRefGoogle Scholar
  34. Massa, G.D., Mitchell, C.A.: Sweetpotato vine management for confined food production in a space life-support system. Adv. Space Res. 49(2), 262–270 (2012)CrossRefGoogle Scholar
  35. Matia, I., Gonzalez-Camacho, F., Herranz, R., Kiss, J.Z., Gasset, G., van Loon, J.J.W.A., Marco, R., Medina, F.J.: Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J Plant Phys. 167(3), 184–193 (2010)CrossRefGoogle Scholar
  36. Miransari, M.: Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotechnol. 89(4), 917–930 (2010)CrossRefGoogle Scholar
  37. Miyamoto, K., Yamamoto, R., Fujii, S., Soga, K., Hoson, T., Shimazu, T., Masuda, Y., Kamisaka, S., Ueda, J.: Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat. J. Plant Res. 112(1108), 413–418 (1999)CrossRefGoogle Scholar
  38. Monje, O., Stutte, G.W., Goins, G.D., Porterfield, D.M.: Farming in space: environmental and biophysical concerns. Adv. Space Res. 31(1), 151–167 (2003)CrossRefGoogle Scholar
  39. Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M.: The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2), 429–448 (2014)CrossRefGoogle Scholar
  40. Nakajima, S., Shiraga, K., Suzuki, T., Kondo, N., Ogawa, Y.: Chlorophyll, carotenoid and anthocyanin accumulation in mung bean seedling under clinorotation. Microgravity Sci. Technol. 29(6), 427–432 (2017)CrossRefGoogle Scholar
  41. National Research Council: Recapturing a Future for Space Exploration. National Academies Press, Washington (2015)Google Scholar
  42. Perbal, G., Driss-Ecole, D., Rutin, J., Salle, G.: Graviperception of lentil roots grown in space (Spacelab D1 Mission). Physiol. Plant. 70(2), 119–126 (1987)CrossRefGoogle Scholar
  43. Pletser, V., Frischauf, N., Cohen, D., Foster, M., Spannagel, R., Szeszko, A., Laufer, R.: First Middle East aircraft parabolic flights for ISU participant experiments. Microgravity Sci. Technol. 29(3), 209–219 (2017)CrossRefGoogle Scholar
  44. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016)
  45. Scholz, A., Juang, J.-N.: Toward open source CubeSat design. Acta Astronaut. 115(C), 384–392 (2015)CrossRefGoogle Scholar
  46. Sherwood, B.: Comparing future options for human space flight. Acta Astronaut. 69(5-6), 346–353 (2011)CrossRefGoogle Scholar
  47. Soh, H., Srikanth, K., Whang, S.S., Lee, S.: Morphological and gene expression pattern changes in wrky46 mutant Arabidopsis thaliana under altered gravity conditions. Botany 93(6), 333–343 (2015)CrossRefGoogle Scholar
  48. Song, Y., Wang, X.-D., Rose, R.J.: Oil body biogenesis and biotechnology in legume seeds. Plant Cell Rep. 36(10), 1519–1532 (2017)CrossRefGoogle Scholar
  49. Stanton-Geddes, J., Paape, T., Epstein, B., Briskine, R., Yoder, J., Mudge, J., Bharti, A.K., Farmer, A.D., Zhou, P., Denny, R., May, G.D., Erlandson, S., Yakub, M., Sugawara, M., Sadowsky, M.J., Young, N.D., Tiffin, P.: Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by Whole-Genome, Sequence-Based Association Genetics in Medicago truncatula. PLoS ONE 8(5), e65688 (2013)CrossRefGoogle Scholar
  50. Vandenbrink, J.P., Kiss, J.Z.: Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci. 243, 115–119 (2016)CrossRefGoogle Scholar
  51. Varshney, R.K., Kudapa, H.: Legume biology: the basis for crop improvement. Funct. Plant Biol. 40(12), v–viii (2013)CrossRefGoogle Scholar
  52. Volkmann, D., Behrens, H.M., Sievers, A.: Development and gravity sensing of cress roots under microgravity. Naturwiss 73(7), 438–441 (1986)CrossRefGoogle Scholar
  53. Wang, D., Yang, S., Tang, F., Zhu, H.: Symbiosis specificity in the legume - rhizobial mutualism. Cell. Microbiol. 14(3), 334–342 (2012)CrossRefGoogle Scholar
  54. Wolverton, C., Kiss, J.Z.: An update on plant space biology. Grav. Space Biol. 22(2), 13–20 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiOxfordUSA
  2. 2.Department of BiologyUniversity of North Carolina-GreensboroGreensboroUSA

Personalised recommendations